scholarly journals Noise Reduction Mechanisms of an Airfoil with Trailing Edge Serrations at Low Mach Number

2019 ◽  
Vol 9 (18) ◽  
pp. 3784 ◽  
Author(s):  
Hui Tang ◽  
Yulong Lei ◽  
Yao Fu

Trailing-edge serrations have proven to be valid applications of trailing edge noise mitigation for an airfoil, while the physical noise reduction mechanism has not been adequately studied. We performed simulations employing Large-eddy simulation and the Lighthill–Curle method to reveal the variation in the hydrodynamic field and sound source due to the trailing edge serrations. The grid resolution and computational results were validated against experimental data. The simulation results show that: the trailing edge serrations impede the growth of spanwise vortices and promote the development of streamwise vortices near the trailing edge and the wake; the velocity fluctuations in the vertical cross-section of the streamwise direction near the trailing edge are reduced for the serrated airfoil, thereby obviously reducing the strength of the pressure fluctuations near the trailing edge; and the trailing edge serrations decrease the distribution of the sound source near the trailing edge and reduce the local peak value of sound pressure level in a specific frequency range as well as the overall sound pressure level. Moreover, we observed that, in the flow around the NACA0012 airfoil, the location where the strong sound source distribution begins to appear is in good agreement with the location where the separated boundary layer reattaches. It is therefore effective to reduce trailing edge noise by applying serrations on the upstream of the reattachment point.

Author(s):  
Fumio Shimizu ◽  
Kazuhiro Tanaka ◽  
Koji Yamamoto ◽  
Hiroshi Shigefuji

The noise and vibration control are the one of important issues. A soundproof barrier, which covers a sound source with sound absorbing materials, is very useful for the noise reduction. When large noise and high temperature heat emit from the sound source, we must also consider the heat radiation as well as the noise reduction. The purpose of the present study is to investigate the relationship between sound pressure level and vibration on a soundproof barrier around a sound source. The effect of heat radiation hole on the sound insulation performance of the soundproof barrier is also investigated. The sound pressure level and the vibration displacement were similarly distributed on the surface of the barrier. Therefore, the vibration of the barrier was strongly influenced to the sound pressure level of the transmitted sound.


2021 ◽  
Author(s):  
Zonghan Sun ◽  
Jie Tian ◽  
Grzegorz Liśkiewicz ◽  
Zhaohui Du ◽  
Hua Ouyang

Abstract A noise reduction method for axial flow fans using a short inlet duct is proposed. The pattern of noise reduction imposed by the short inlet duct on the axial flow cooling fan under variable working conditions was experimentally and numerically examined. A 2-cm inlet duct was found to reduce tonal noise. As the tip Mach number of the fan increased from 0.049 to 0.156, the reduction in the total average sound pressure level at 1 m from the fan increased from 0.8 dB(A) to 4.3 dB(A), and further achieved 4.8 dB(A) when a 1-cm inlet duct was used. The steady computational fluid dynamics (CFD) showed that the inlet duct has little effect on the aerodynamic performance of the fan. The results of the full passage unsteady calculation at the maximum flow rate showed that the duct has a significant influence on the suction vortexes caused by the inlet flow non-uniformity. The suction vortexes move upstream to weaken the interaction with the rotor blades, which significantly reduces the pulsating pressure on the blades. The sound pressure level (SPL) at the blade passing frequency (BPF) contributed by the thrust force was calculated to reduce by 36 dB at a 135° observer angle, reflecting the rectification effect of the duct on the non-uniform inlet flow and the improvement in characteristics of the noise source. The proper orthogonal decomposition (POD) of the static pressure field on the blades verified that the main spatial mode is more uniformly distributed due to the duct, and energy owing to the rotor-inlet interaction decreases. A speed regulation strategy for the cooling fan with short inlet duct is proposed, which provides guidance for the application of this noise reduction method.


Author(s):  
Yutaka Ohta ◽  
Eisuke Outa

A hybrid-type noise control method is applied to fundamental and higher-order blade-passing frequency components, abbreviated to BPF components, radiated from a centrifugal blower. An active cancellation of the BPF noise source is conducted based on a detailed investigation of the noise source distribution by using correlation analysis. The sound pressure level of 2nd- and/or 3rd-order BPF can be reduced by more than 15 decibels and discrete tones almost eliminate from the power spectra of blower-radiated noise. On the other hand, the sound pressure level of the fundamental BPF is difficult to reduce effectively by the active cancellation method because of the large amplitude of the noise source fluctuation. However, the fundamental BPF is largely influenced by the frequency-response characteristics of the noise transmission passage, and is passively reduced by appropriate adjusting of the inlet duct length. Simultaneous reduction of BPF noise, therefore, can be easily made possible by applying passive and active control methods on the fundamental and higher-order BPF noise, respectively. We also discuss the distribution pattern of BPF noise sources by numerical simulation of flow fields around the scroll cutoff.


2020 ◽  
Author(s):  
Bo Li ◽  
Yujing Wu ◽  
Dange Guo ◽  
Dan Luo ◽  
Diangui HUANG

Abstract This paper imitates the raised structure of the leading edge of the humpback whale fin limbs, designed six bionic blades. The aerodynamic analysis show that: the wave leading edge blade can improve the total pressure efficiency of the axial flow fan, and under off-design conditions, the aerodynamic performance of bionic fan is better than that of prototype fan. The noise analysis shows that: under the condition of constant wave number, increasing wave amplitude can reduce the overall sound pressure level at the monitoring point, in the middle and high frequency range, the sound pressure level of the bionic fan at the monitoring point is significantly lower than that of the prototype fan, and the noise reduction effect increases with the increase of wave amplitude; under the condition of constant wave amplitude, increasing the wave number can reduce the fan noise. At a certain wave number and amplitude, the overall sound pressure level of the bionic fan at the monitoring point is at most 2.91 dB lower than that of the prototype fan. In this paper, the noise reduction effect of increasing wave number is more obvious than that of increasing wave amplitude.


Author(s):  
Shane Leslie Finnegan ◽  
Craig Meskell ◽  
Samir Ziada

An empirical investigation of the spatial distribution of aeroacoustic sources around two tandem cylinders subject to ducted flow and forced transverse acoustic resonance is described. The work builds on a previous investigation by the authors and utilises Howe’s theory of aerodynamic sound. The influence of the sound pressure level in the duct on the strength and location of the aeroacoustic sources in the flow was the main focus of the investigation and experiments to resolve the aeroacoustic source distribution were concentrated at a low main-stream flow velocity (before acoustic-Strouhal coincidence), at a medium mainstream flow velocity (just after acoustic-Strouhal coincidence) and at a high mainstream flow velocity (substantially higher than acoustic-Strouhal coincidence). The sound pressure level was found to have a considerable effect on the “lock-in”’ range of the cylinders which widened as the sound pressure level increased. A proposed normalisation of the net acoustic energy transfer per spanwise location appears to show good metric for the distribution of the aeroacoustic sources in the flow field. Using this, it was found that the amplitude of the sound pressure had a negligible influence on the aeroacoustic sources in the wake and the gap region for all the tested cases apart from the lowest flow velocity. This particular case showed indications that the aeroacoustic source strength and location could be altered for certain changes in sound pressure level.


Author(s):  
T. Ishii ◽  
H. Oinuma ◽  
K. Nagai ◽  
N. Tanaka ◽  
Y. Oba ◽  
...  

This paper describes an experimental study on a notched nozzle for jet noise reduction. The notch, a tiny tetrahedral dent formed at the edge of a nozzle, is expected to enhance mixing within a limited region downstream of the nozzle. The enhanced mixing leads to the suppression of broadband peak components of jet noise with little effect on the engine performance. To investigate the noise reduction performances of a six-notch nozzle, a series of experiments have been performed at an outdoor test site. Tests on the engine include acoustic measurement in the far field to evaluate the noise reduction level with and without the notched nozzle, and pressure measurement near the jet plume to obtain information on noise sources. The far-field measurement indicated the noise reduction by as much as 3 dB in terms of overall sound pressure level in the rear direction of the engine. The use of the six-notch nozzle though decreased the noise-benefit in the side direction. Experimental data indicate that the high-frequency components deteriorate the noise reduction performance at wider angles of radiation. Although the increase in noise is partly because of the increase in velocity, the penetration of the notches into the jet plume is attributed to the increase in sound pressure level in higher frequencies. The results of near-field measurement suggest that an additional sound source appears up to x/D = 4 due to the notches. In addition, the total pressure maps downstream of the nozzle edge, obtained using a pressure rake, show that the notched nozzle deforms the shape of the mixing layer, causing it to become wavy within a limited distance from the nozzle. This deformation of the mixing layer implies strong vortex shedding and thus additional noise sources. To improve the noise characteristics, we proposed a revised version of the nozzle on the basis of a computational prediction, which contained 18 notches that were smaller than those in the 6-notched nozzle. Ongoing tests indicate greater noise reduction in agreement with the computational prediction.


2011 ◽  
Vol 243-249 ◽  
pp. 4447-4450 ◽  
Author(s):  
Yan Liu ◽  
Bing Yang ◽  
Xiao Pai Zhang ◽  
Zhi Fang Zhong ◽  
Hua Xin Dong ◽  
...  

Based on the comparative analysis on the low-noise road surface, noise reduction green belts, noise barriers and other noise reduction methods, the sound barrier is put forward as an important method for reducing the city road traffic noise. The noise reduction effects for different heights and different distances of the sound barrier are tested and analyzed through noise and vibration test and analysis system, the following conclusions can be drawn. At the same heights from the ground, the father the test points away from the noise barrier, the higher the sound pressure level will be; At the same distances from the sound barrier, the nearer the test points from the ground, the smaller the sound pressure level will be; All of the sound pressure level curves have basically the same variation trend and the main noise frequency band is from 160 to 1600Hz; In the high frequency range which is greater than 1600Hz, the sound pressure level decrease significantly, indicating that the sound barrier has better noise reduction effect for high frequency range. The results provide the basis for the design of the sound barriers.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4356
Author(s):  
Feng Lai ◽  
Zhiyong Huang ◽  
Feng Guo

Based on the manual of macroporous noise-reducing asphalt pavement design, the indoor main drive pavement function accelerated loading test system was applied to investigate the impact of speed, loading conditions (dry and wet) and structural depth on the noise reduction of macroporous Open Graded Friction Course (OGFC) pavement, as well as its long-term noise reduction. Combined with the noise spectrum of the weighted sound pressure level, the main components and sensitive frequency bands of pavement noise under different factors were analyzed and compared. According to experimental results, the noise reduction effect of different asphalt pavements from strong to weak is as follows: OGFC-13 > SMA-13 > AC-13 > MS-III. The noise reduction effect of OGFC concentrates on the frequency of 1–4 kHz when high porosity effectively reduces the air pump effect. As the effect of wheels increases and the depth of the road structure decreases, the noise reduction effect of OGFC decreases. It indicates the noise reduction performance attenuates at a later stage, similar to the noise level of densely graded roads.


Sign in / Sign up

Export Citation Format

Share Document