scholarly journals Optimization of Vibration Characteristics of Fused Deposition Modeling Color 3D Printer Based on Modal and Power Spectrum Method

2019 ◽  
Vol 9 (19) ◽  
pp. 4154 ◽  
Author(s):  
Dawei Zhang ◽  
Zhiyong Li ◽  
Shengxue Qin ◽  
Shanling Han

To improve the accuracy of the Fused Deposition Modeling (FDM) color 3D printer in printing color pieces, the vibration characteristics were studied. Firstly, the models of the FDM color 3D printer were qualitatively simplified by mechanics theory to provide theoretical support for dynamic characteristics of the structure, and the finite element modal analysis was performed by the ANSYS (It is an engineering simulation and 3D design software) Workbench to obtain the natural frequency and mode shape displacement of the FDM color 3D printer. Then, the power spectrum of the vibration signal of the previous FDM color 3D printer was measured through frequency domain analysis, and the resonance positions of the 3D printer were obtained by comparing the finite element analysis with experimental analysis. Finally, the design of the color 3D printer was optimized based on the analysis. The results indicate that the optimized scheme can effectively improve the resonance characteristics of the device and reduce the overall modal displacement. The actual experiment of the 3D printer demonstrates that the accuracy of the optimized device has been improved, which has crucial reference significance for the development of the FDM color 3D printer.

Author(s):  
Jan N. Eggert ◽  
Paul K. Wright

This project combines the topics of a) modern prototyping methods, b) studies on osteoporotic trabecular bone and c) engineering analysis using Finite Element Methods. The results are preliminary and serve as a basis for futures studies in bone mechanics. Specifically, the prototyping method of Fused Deposition Modeling was used to create a ‘scaled up’ model of a human trabecular bone. This type of bone was chosen because it is often afflicted by osteoporosis, a human condition that draws significant research attention. Thus the study described here was in part motivated by a larger research investigation into the structural behavior of degenerating human bones. The goal was to build and test a physical model and compare its behavior against a Finite Element Analysis (FEA) of the same structure. First, the model material was mechanically tested to determine Young’s modulus and Poisson’s ratio for input values to the FEA. An existing micro CT file was then adjusted for the first successful scaled bone model built on Fused Deposition Modeling. This physical model was equipped with strain gauges to determine localized strains, and successively tested in compression. (see Figure1.) The results were finally compared to the FEA, and an extensive error analysis was performed to relate physical analysis to computational assumptions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andrés A. Garcia-Granada

Purpose The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles. Design/methodology/approach Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples. Findings Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength. Originality/value The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.


2021 ◽  
Author(s):  
Prathamesh Baikerikar ◽  
Cameron J Turner

Abstract Parts built using Fused Deposition Modeling (FDM – an additive manufacturing technology) differ from their design model in terms of their microstructure and material properties. These differences lead to a certain amount of ambiguity regarding the structure, strength and stiffness of the final FDM part. Increasing use of FDM parts as end use products, necessitates accurate simulations and analyses during part design. However, analysis methods such as Finite Element Analysis, are used for analysis of continuum models, and may not accurately represent the non-continuous non-linear FDM parts. Therefore, it is necessary to determine the accuracy and precision of FEA for FDM parts. The goal of this study is to compare FEA simulations of the as-built geometries with the experimental tests of actual FDM parts. Dogbone geometries that include different infill patterns are tested under tensile loading and later simulated using FEA. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seung-Han Yang ◽  
Kwang-Il Lee

Purpose The purpose of this study is to improve the accuracy of a fused deposition modeling three-dimensional (3D) printer by identifying and compensating for position-independent geometric errors using a face-diagonal length test featuring a designed artifact and a Vernier caliper. Design/methodology/approach An artifact that does not require support when printing was designed and printed to allow performance of the face-diagonal length test. A Vernier caliper was used to measure the lengths of diagonals in the XY, YZ and ZX planes of the printed artifact specimen; this completed the face-diagonal length test. The relationships between position-independent geometric errors of the linear axes X, Y and Z and the measured diagonal lengths of the three planes were determined to identify geometric errors. Findings The approach was applied to a commercial fused deposition modeling 3D printer, and three position-independent geometric errors were rapidly identified. The artifact was re-printed after model-based compensation for these errors and the diagonal lengths were re-measured. The results were verified via coordinate measuring machine measurement of a simple test piece without and with model-based compensation for identified geometric errors. Furthermore, the proposed approach was applied to a commercial 3D printer. Research limitations/implications The measured diagonal lengths of the printed artifacts varied greatly. Thus, further studies should investigate the effects of printing materials and parameters on the length discrepancies of 3D printed artifacts. Practical implications A software-based compensation of identified position-independent geometric errors has to be used at commercial 3D printers for accuracy improvements of printed parts. Originality/value Thus, the approach is of practical utility; it can be periodically used to identify position-independent geometric errors and ensure that the 3D printer is consistently accurate.


2019 ◽  
Vol 25 (1) ◽  
pp. 82-87
Author(s):  
Wenqiong Su ◽  
Yulong Li ◽  
Lulu Zhang ◽  
Jiahui Sun ◽  
Shuopeng Liu ◽  
...  

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 μm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


Author(s):  
Guoying Dong ◽  
Daniel Tessier ◽  
Yaoyao Fiona Zhao

AbstractAdditive manufacturing (AM) has enabled great application potential in several major industries. The footwear industry can customize shoe soles fabricated by AM. In this paper, lattice structures are discussed. They are used to design functional shoe soles that can have controllable stiffness. Different topologies such as Diamond, Grid, X shape, and Vintiles are used to generate conformal lattice structures that can fit the curved surface of the shoe sole. Finite element analysis is conducted to investigate stress distribution in different designs. The fused deposition modeling process is used to fabricate the designed shoe soles. Finally, compression tests compare the stiffness of shoe soles with different lattice topologies. It is found that the plantar stress is highly influenced by the lattice topology. From preliminary calculations, it has been found that the shoe sole designed with the Diamond topology can reduce the maximum stress on the foot. The Vintiles lattice structure and the X shape lattice structure are stiffer than the Diamond lattice. The Grid lattice structure buckles in the experiment and is not suitable for the design.


Sign in / Sign up

Export Citation Format

Share Document