scholarly journals Dual Sacrificial Molding: Fabricating 3D Microchannels with Overhang and Helical Features

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Reverson Fernandes Quero ◽  
Gessica Domingos Silveira ◽  
Jose Alberto Fracassi da Silva ◽  
Dosil Pereira de Jesus

The fabrication of microfluidic devices through Fused Deposition Modeling (FDM) 3D printing has faced several challenges, mainly regarding obtaining microchannels with suitable transparency and sizes. Thus, the use of this...


2017 ◽  
Vol 242 ◽  
pp. 35-40 ◽  
Author(s):  
Gabriel Gaal ◽  
Melissa Mendes ◽  
Tiago P. de Almeida ◽  
Maria H.O. Piazzetta ◽  
Ângelo L. Gobbi ◽  
...  

Author(s):  
Budi Hadisujoto ◽  
Robby Wijaya

Additive manufacturing process known as the 3D printing process is an advanced manufacturing process including one of the components to support industrial revolution 4.0. The initial development of a 3D printing machine at Sampoerna University is the background of this research. The 3D printing setup of Fused Deposition Modeling (FDM) was built using H-bot moving mechanism by considering the rigidity aspect. The FDM printing method is selected due to its cost and reliability. In this early development, the brackets were custom made using a 3D printer with Polylactic Acid (PLA) material. The result showed that the software worked properly in accordance with the assembled mechanical and electrical parts. The 3D printer could print simple objects such as planes and cubes with small dimensions. However, the printing specimen still lacked accuracy caused by the less rigidity of linear rail brackets, less coplanar belt arrangement, and error in some electronic components.


Author(s):  
Vadym Shalenko ◽  
Boris Korniychuk ◽  
Andriі Masluyk

Not much time has passed since the appearance of the first 3D printer. Today there are many different printers. They differ in various 3D printing technologies, namely: Stereolithography – SL, Selective Laser Sintering, Fused Deposition Modeling – FDM, Laminated Object Manufacturing – LOM, Polyjet and Ployjet Matrix. In recent years, the spread of 3D printing technology has become and continues to be used more and more today. Of course, in the future we will see a large-scale spread of additive methods, but the practical application of 3D printing today is available to everyone. Melting deposition modeling technologies have become widespread and available. The authors in this article consider possible options for upgrading the mounting of the end sensor of the Z Axis and automating the process of calibration of the zero gap of the extruder nozzle relative to the working surface of the printer. This calibration is important. This affects the accuracy and printing process of the future plastic model. During the operation of the 3D printer, it is often necessary to service the extruder, which forces the process of calibrating the zero gap of the printer nozzle. Optimally correct selected nozzle clearance affects the accuracy, geometry of the model and printing as a whole. It also allows you to get rid of peeling off the model from the desktop surface and the destruction of the model during printing.


Author(s):  
Lamis R. Darwish ◽  
Mohamed T. El-Wakad ◽  
Mahmoud Farag

Abstract The extrusion systems of the widespread Fused Deposition Modeling (FDM) 3D printers enable printing only with materials in the filament form. This property hinders the usage of these FDM 3D printers in many fields where the printing materials are in forms other than filaments. Thus, this paper proposes a Heated Inductive-enabled Syringe Pump Extrusion (HISPE) multifunction open-source module with a potential application in bioprinting (i.e., extrusion-based bioprinting). The proposed HISPE module is designed to be cost-effective, simple, and easy to replicate. It is capable of replacing the conventional extrusion system of any open-source cartesian FDM 3D printer. This module widens both the range of the FDM 3D printing materials (e.g., bioinks, biopolymers, blends of materials, or composites) and their forms (e.g., hydrogels, powder, pellets, or flakes). The capabilities of the proposed module were investigated through 3D printing bone scaffolds with a filament diameter of 400 µm and pore size of 350 µm by a Polycaprolactone (PCL) biodegradable polymer in the pellets form. The morphological accuracy of the printed scaffolds was investigated by SEM. The investigation results confirm the accurateness of the proposed HISPE module in printing high-precision models.


2021 ◽  
Author(s):  
Paula Drumond ◽  
Marcio Pereira Basílio ◽  
Igor Pinheiro de Araújo Costa ◽  
Daniel Augusto de Moura Pereira ◽  
Carlos Francisco Simões Gomes ◽  
...  

3D printing technologies define the essence of Additive Manufacturing and make possible the agile production of customized parts from different materials, with lower unit cost and waste generation. Currently, one of the most widespread 3D printer technologies is the Fused Deposition Modeling (FDM) type, which is the object of this paper. The choice of 3D printing equipment depends on the alignment of the purpose of use and technical knowledge to consider certain requirements. Therefore, this choice can be time-consuming and/or imprecise. In this sense, this work aimed to classify FDM-type 3D printer models by applying the ELECTRE-MOr method, a Multi-criteria Decision Aiding (MCDA) method. As a result, based on a categorization between classes, the FABER 10 alternative was the only one that presented class A performance in all evaluated scenarios, based on criteria defined by the experts consulted in this study.


2021 ◽  
Vol 328 ◽  
pp. 07018
Author(s):  
Ivan Junaidy Abdul Karim ◽  
Sukiman B ◽  
Muhammad Fadly Hi. Abbas

The process of research and refinement of Fused Deposition Modeling 3D Printer, surely contains many variables and parameters with the aim of generating a 3D object with the results and the level of accuracy approaching its original design and can be applied as the expected design. In addition to the effect of printer type on the FDM method, the filament material used as a filler to print 3D objects certainly has different mechanical and physical characteristics, thus allowing for different object results for each different filament material. This research was conducted to determine the effect of internal variations of its geometry and dimensions on the mechanical properties of ABS using a 3D Printer. The internal geometries that are varied are triangle and honeycomb, with variations in thickness for each geometry are 1 mm and 2 mm, and variations in the axis of symmetry are 4.5 mm and 9 mm. The results showed that the control sample had tensile and bending strength results that matched the ABS filament datasheet reference. Objects with an internal geometry triangle in the size 4.5 mm and 2 mm of thickness have better tensile and bending strength than honeycomb geometry.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


Sign in / Sign up

Export Citation Format

Share Document