scholarly journals A Novel Adaptive Model Predictive Control Based Three-Phase Inverter Current Control Method

2019 ◽  
Vol 9 (24) ◽  
pp. 5413 ◽  
Author(s):  
Mingyu Lei ◽  
Ying Zhang ◽  
Lexuan Meng ◽  
Yibo Wang ◽  
Zilong Yang ◽  
...  

This paper proposes a novel current control method based on Model Predictive Control (MPC) for three-phase inverters. The proposed method is based on an Adaptive MPC (A-MPC) with a PWM modulation. An innovative model parameter estimation and modification method is also proposed, leading to enhanced control accuracy. Comparing with traditional current control methods, such as PI and PR control, the proposed method has better dynamic performance. The transient dynamics, i.e., recovery time and overshoot, have been considerably improved. Simulation and experimental results are presented to validate the effectiveness of the proposal.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Li Haixia ◽  
Lin Jican

In the present study, the current control method of the model predictive control is applied to the field-oriented control induction motor. The augmentation model of the motor is initially established based on the stator current equation, which performs the current predictive control and formulates the new cost function by means of tracking error. Then, the influence of parameter error on the current control stability in the prediction model is analysed, and the current static error is corrected according to the correlation between the input and feedback. Finally, a simple and effective three-vector control strategy is proposed. Moreover, three adjacent basic voltage vectors are utilized, and then six candidate voltage vectors are synthesized in each sector to replace eight basic voltage vectors in the conventional model predictive control (MPC). The obtained results show that synthesized vectors, which have arbitrary amplitude and direction, significantly expand the coverage of the system’s control set, reduce the torque and flux pulsation in the conventional MPC, and improve the steady-state performance of the system. Finally, the dSPACE platform is employed to validate the performed experiment. It is concluded that the proposed method can reduce the torque and flux pulse, perform the induction motor current control, and improve the steady-state performance of the system.


2012 ◽  
Vol 241-244 ◽  
pp. 636-640
Author(s):  
Wu Wu Tang ◽  
Liang Liang Chen ◽  
Hong Xu Yin ◽  
Hao Dong

This paper developed a mathematical model of three-phase PV grid-connected inverter, and studied the grid-connected current control method based on PI control in synchronous rotating reference frame. Simulation and experimental results from the prototype of 30kW three-phase PV grid-connected inverter proved the correctness and the feasibility of the control strategy, and this grid-connected inverter can operate at the unity power factor state with a nice dynamic performance, and the output current has high sinusoidal and low harmonic content as well as good symmetry.


2016 ◽  
Vol 15 (03) ◽  
pp. 133-150 ◽  
Author(s):  
Zhao Guo-Zhu ◽  
Huang Xiang ◽  
Peng Xing

To use regenerative brake and mechanical brake co-operatively to maintain the constant speed and the braking energy can be regenerated as much as possible when vehicles travel downhill, the mathematical model of the braking system is established, and the adaptive model predictive control method is adopted to control the speed of vehicles. The recursive least square algorithm with the forgetting factor is used to identify the road gradient online. And then the control results of the adaptive model predictive control are compared with the results of PID control, simulation results show that the robustness and the stability of the adaptive model predictive control method are better. The speed can be maintained basic stability with the coordinated use of the regenerative braking and the mechanical braking. Meanwhile, the braking energy can be regenerated as much as possible as the regenerative braking system can be used as much as possible. Moreover, as the charge acceptance ability of the battery is restricted, the brake mode switching model is designed. The braking mode can be switched between the electro-mechanical braking system and mechanical braking system according to the SOC of the batteries.


2017 ◽  
Vol 65 (5) ◽  
pp. 589-599
Author(s):  
P. Wiatr ◽  
A. Kryński

Abstract The main goal of this paper is to present a five-level converter with the feature of output voltage boosting capability. Thanks to its modular construction and single DC source usage, 5LCHB converter becomes an important alternative for two-level converters operating with DC-DC converters that use bulky inductors. Furthermore, model predictive control (MPC) method is presented, which allows for boosting output voltage of presented converter while providing three-phase load current control and flying capacitor voltage stabilization. The last section describes a 5kVA laboratory model of five-level hybrid converter interfacing RL load and shows experimental results confirming theoretical analysis derived in previous sections.


Author(s):  
Rahul Jaiswal ◽  
◽  
Anshul Agarwal ◽  
Richa Negi ◽  
Abhishek Vikram ◽  
...  

This article represents the torque ripple performance of modular multilevel converter (MMC) fed brushless dc (BLDC) motor using different current control technique. For reducing the ripple current in BLDC motor, a phase-modulated model predictive control (PMMPC) technique has been proposed. The stator ripple current is almost negligible using PMMPC. This PMMPC current control method is a significant minimization of torque ripple in BLDC motor. A comparative torque ripple behaviour of MMC fed BLDC motor has been done using phase-modulated model predictive control, model predictive control (MPC) and proportional integral (PI) control at different switching frequency. It has been observed that a PMMPC current control technique is more efficient as compared to the MPC as well as PI current control technique. It has also been observed that the torque ripple performance is improved while using PMMPC as compared to the MPC and PI controller. Simulation results have been verified with the help of experimental result and these results are obtained in good agreement to the simulated results.


Sign in / Sign up

Export Citation Format

Share Document