scholarly journals Simulating the Effects of Urban Parameterizations on the Passage of a Cold Front During a Pollution Episode in Megacity Shanghai

Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 79 ◽  
Author(s):  
Jian Wang ◽  
Jingbo Mao ◽  
Yan Zhang ◽  
Tiantao Cheng ◽  
Qi Yu ◽  
...  

Urbanization significantly influences meteorological conditions and air quality. Statistically, air pollution in the megacity of Shanghai usually occurs with cold weather fronts. An air pollution episode during a cold front was simulated using weather research and forecasting and the Community Multi-scale Air Quality model system. In this study, we used two urban schemes, a simple bulk scheme (denoted BULK) and the single-layer urban canopy model (SLUCM), to check the effects of urban parameterization. Our results showed that SLUCM better predicted the arrival time and cooling process of the cold front and more realistically simulated the moving process of the cold front. The improvement in the temperature and relative humidity simulation achieved using SLUCM was more effective under higher urbanization levels, whereas the wind speed simulation was better in rural areas. The simulated concentrations at sites with high urbanization were obviously improved by urban parameterization. The barrier role of the urban canopy during a cold front was better represented and was shown to cause a wider polluted area and higher pollutant concentration using SLUCM than with BULK. Overall, accurate meteorological simulations in the atmospheric boundary layer using SLUCM are expected to provide good prediction of urban air quality.

Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 625 ◽  
Author(s):  
Jana Ďoubalová ◽  
Peter Huszár ◽  
Kryštof Eben ◽  
Nina Benešová ◽  
Michal Belda ◽  
...  

The overall impact of urban environments on the atmosphere is the result of many different nonlinear processes, and their reproduction requires complex modeling approaches. The parameterization of these processes in the models can have large impacts on the model outputs. In this study, the evaluation of a WRF/Comprehensive Air Quality Model with Extensions (CAMx) forecast modeling system set up for Prague, the Czech Republic, within the project URBI PRAGENSI is presented. To assess the impacts of urban parameterization in WRF, in this case with the BEP+BEM (Building Environment Parameterization linked to Building Energy Model) urban canopy scheme, on Particulate Matter (PM) simulations, a simulation was performed for a winter pollution episode and compared to a non-urbanized run with BULK treatment. The urbanized scheme led to an average increase in temperature at 2 m by 2 ∘ C, a decrease in wind speed by 0.5 m s − 1 , a decrease in relative humidity by 5%, and an increase in planetary boundary layer height by 100 m. Based on the evaluation against observations, the overall model error was reduced. These impacts were propagated to the modeled PM concentrations, reducing them on average by 15–30 μ g m − 3 and 10–15 μ g m − 3 for PM 10 and PM 2.5 , respectively. In general, the urban parameterization led to a larger underestimation of the PM values, but yielded a better representation of the diurnal variations.


Author(s):  
Dung Minh Ho ◽  
Bang Quoc Ho ◽  
Thang Viet Le

Livestock is one of the main activities of the agricultural sector in Tan Thanh district, Ba Ria – Vung Tau province. Beside of pollution sources such as waste water, solid waste, livestock activity in Tan Thanh district, Ba Ria - Vung Tau province in recent years has caused air pollution in the livestock area and surrounding area. This research was carried out to evaluate the process of air pollution dispersion from livestock activities based on applying the TAPM meteorological model and AERMOD air quality model. The results showed that the maximum concentrations of air pollutants from livestock area such as NH3, H2S and CH3SH exceeded the National Technical Regulation on Ambient Air Quality (average hour) in the centre of Tan Thanh district, such as Toc Tien commune, part of Tan Phuoc and Phuoc Hoa communes, is 505 μg/m3; 57.4 μg/m3 and 111 μg/m3, respectively. Phu My district and other suburban communes (Hac Dich, Song Xoai, Chau Pha, Tan Hoa, Tan Hai, My Xuan, etc.) have distribution of lower concentrations of air pollutants. Base on the present results of modeling, the authors have proposed livestock development scenarios to control air pollution from this activity, contributing to environmental protection for Tan Thanh district.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Anikó Rakai ◽  
Gergely Kristóf

Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7.


2017 ◽  
Vol 51 (11) ◽  
pp. 6229-6236 ◽  
Author(s):  
Andrew V. Beddows ◽  
Nutthida Kitwiroon ◽  
Martin L. Williams ◽  
Sean D. Beevers

2021 ◽  
Author(s):  
Sumil Thakrar ◽  
Christopher Tessum ◽  
Joshua Apte ◽  
Srinidhi Balasubramanian ◽  
Dylan B Millet ◽  
...  

<p>Each year, millions of premature deaths worldwide are caused by exposure to outdoor air pollution, especially fine particulate matter (PM<sub>2.5</sub>). Designing policies to reduce deaths relies on air quality modeling for estimating changes in PM<sub>2.5</sub> concentrations from many policy scenarios at high spatial resolution. However, air quality modeling typically has high requirements for computation and expertise, which limits policy design, especially in countries where most PM<sub>2.5</sub>-related deaths occur. Lower requirement reduced-complexity models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed for the United States, to simulate annual-average primary and secondary PM<sub>2.5</sub> concentrations across a global-through-urban spatial domain: “Global InMAP”. Global InMAP uses a variable resolution grid, with 4 km horizontal grid cell widths in cities. We evaluate Global InMAP performance both against measurements and a state-of-the-science chemical transport model, GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant concentrations with a normalized mean bias of 59%–121%. Global InMAP can be run on a desktop computer; simulations here took 2.6–4.4 hours. This work presents a global, open-source, reduced-complexity air quality model to facilitate air pollution policy assessment worldwide, providing a tool for reducing the deaths where they occur most.</p>


2018 ◽  
Vol 53 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Hikari Shimadera ◽  
Tomohito Matsuo ◽  
Akira Kondo

Sign in / Sign up

Export Citation Format

Share Document