scholarly journals Spatial Distributions and Sources of Inorganic Chlorine in PM2.5 across China in Winter

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 505 ◽  
Author(s):  
Li Luo ◽  
Yong-Yun Zhang ◽  
Hua-Yun Xiao ◽  
Hong-Wei Xiao ◽  
Neng-Jian Zheng ◽  
...  

Chlorine is an important atmospheric photochemical oxidant, but few studies have focused on atmospheric chlorine. In this study, PM2.5 samples were collected from urban and rural sites across China in January 2018, and concentrations of Cl− and other water-soluble ions in PM2.5 were analyzed. The size-segregated aerosol Cl− data measured across Chinese cities by other studies were compiled for comparison. The observed data demonstrated that the Cl− concentrations of PM2.5 in northern cities (5.0 ± 3.7 µg/m3) were higher than those in central (1.9 ± 1.2 µg/m3) and southern cities (0.84 ± 0.54 µg/m3), suggesting substantial chlorine emissions in northern cities during winter. The concentrations of Cl− in aerosol were significantly higher in urban regions (0.11–26.7 µg/m3) compared to than in rural regions (0.03–0.61 µg/m3) across China during winter, implying strong anthropogenic chlorine emission in cities. Based on the mole ratios of Cl−/Na+, Cl−/K+ and Cl−/ SO 4 2 − and the PMF model, Cl− in northern and central cities was mainly sourced from the coal combustion and biomass burning, but in southern cities, Cl− in PM2.5 was mainly affected by the equilibrium between gas-phase HCl and particulate Cl−. The size-segregated statistical data demonstrated that particulate Cl− had a bimodal pattern, and more Cl− was distributed in the fine model than that in the coarse mode in winter, with the opposite pattern was observed in summer. This may be attributed to both sources of atmospheric Cl− and Cl− involved in chemical processes. This study reports the concentrations of aerosol Cl− on a national scale, and provides important information for modeling the global atmospheric reactive chlorine distribution and the effects of chlorine on atmospheric photochemistry.

2016 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Yoshika Sekine ◽  
◽  
Nami Takahashi ◽  
Yuri Ohkoshi ◽  
Akihiro Takemasa ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 456
Author(s):  
Huimin Jiang ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Xi Zhou ◽  
Fanglong Wang ◽  
...  

We investigated water-soluble ions (WSIs) of aerosol samples collected from 2016 to 2017 in Lanzhou, a typical semi-arid and chemical-industrialized city in Northwest China. WSIs concentration was higher in the heating period (35.68 ± 19.17 μg/m3) and lower in the non-heating period (12.45 ± 4.21 μg/m3). NO3−, SO42−, NH4+ and Ca2+ were dominant WSIs. The concentration of SO42− has decreased in recent years, while the NO3− level was increasing. WSIs concentration was affected by meteorological factors. The sulfur oxidation and nitrogen oxidation ratios (SOR and NOR) exceeded 0.1, inferring the vital contribution of secondary transformation. Meanwhile higher O3 concentration and temperature promoted the homogeneous reaction of SO2. Lower temperature and high relative humidity (RH) were more suitable for heterogeneous reactions of NO2. Three-phase cluster analysis illustrated that the anthropogenic source ions and natural source ions were dominant WSIs during the heating and non-heating periods, respectively. The backward trajectory analysis and the potential source contribution function model indicated that Lanzhou was strongly influenced by the Hexi Corridor, northeastern Qinghai–Tibetan Plateau, northern Qinghai province, Inner Mongolia Plateau and its surrounding cities. This research will improve our understanding of the air quality and pollutant sources in the industrial environment.


2021 ◽  
Vol 102 ◽  
pp. 123-137
Author(s):  
Jie Su ◽  
Pusheng Zhao ◽  
Jing Ding ◽  
Xiang Du ◽  
Youjun Dou

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 926
Author(s):  
Hsing-Wang Li ◽  
Kang-Shin Chen ◽  
Chia-Hsiang Lai ◽  
Ting-Yu Chen ◽  
Yi-Ching Lin ◽  
...  

Atmospheric particulate matters (PMs) were measured in an industry-intensive region in central Taiwan in order to investigate the characteristics and possible sources of PMs. The samplings were simultaneously conducted using a 10- and 3-stage Micro Orifice Uniform Deposit Impactor (MOUDI) from 2017 to 2018. In this study, the characteristics of PMs in this region were evaluated by measuring the mass concentration of PMs and analyzing water-soluble ions and metallic elements, as well as dioxins. Additionally, principal component analysis (PCA) was used to identify the potential sources of PMs. The results showed that the mean concentration of coarse (>1.8 μm), fine (0.1–1.8 μm), and ultrafine (<0.1 μm) particles were 13.60, 14.38, and 3.44 μg/m3, respectively. In the industry-intensive region, the size distribution of ambient particles showed a bi-modal distribution with a high concentration of coarse particles in the spring and summer, while fine particles were dominant in the autumn and winter. The most abundant water-soluble ions of PMs were NO3−, Cl−, and SO42−, while the majority of metallic elements were Na, Fe, Ca, Al, and Mg in different particle sizes. The results of Pearson’s correlation analysis for metals indicated that the particles in the collected air samples were related to the iron and steelmaking industries, coal burning, vehicle exhausts, and high-tech industries. The dioxin concentration ranged from 0.0006 to 0.0017 pg I-TEQ/Nm3. Principal component analysis (PCA) revealed that the contribution to PMs was associated with sea salt, secondary pollutants, and industrial process.


Author(s):  
Shuang Wang ◽  
Mandeep Kaur ◽  
Tengfei Li ◽  
Feng Pan

The present study was planned to explore the pollution characteristics, health risks, and influence of atmospheric fine particulate matter (PM2.5) and its components on blood routine parameters in a typical industrial city (Xinxiang City) in China. In this study, 102 effective samples 28 (April–May), 19 (July–August), 27 (September–October), 28 (December–January) of PM2.5 were collected during different seasons from 2017 to 2018. The water-soluble ions and metal elements in PM2.5 were analyzed via ion chromatography and inductively coupled plasma–mass spectrometry. The blood routine physical examination parameters under different polluted weather conditions from January to December 2017 and 2018, the corresponding PM2.5 concentration, temperature, and relative humidity during the same period were collected from Second People’s Hospital of Xinxiang during 2017–2018. Risk assessment was carried out using the generalized additive time series model (GAM). It was used to analyze the influence of PM2.5 concentration and its components on blood routine indicators of the physical examination population. The “mgcv” package in R.3.5.3 statistical software was used for modeling and analysis and used to perform nonparametric smoothing on meteorological indicators such as temperature and humidity. When Akaike’s information criterion (AIC) value is the smallest, the goodness of fit of the model is the highest. Additionally, the US EPA exposure model was used to evaluate the health risks caused by different heavy metals in PM2.5 to the human body through the respiratory pathway, including carcinogenic risk and non-carcinogenic risk. The result showed that the air particulate matter and its chemical components in Xinxiang City were higher in winter as compared to other seasons with an overall trend of winter > spring > autumn > summer. The content of nitrate (NO3−) and sulfate (SO42−) ions in the atmosphere were higher in winter, which, together with ammonium, constitute the main components of water-soluble ions in PM2.5 in Xinxiang City. Source analysis reported that mobile pollution sources (coal combustion emissions, automobile exhaust emissions, and industrial emissions) in Xinxiang City during the winter season contributed more to atmospheric pollution as compared to fixed sources. The results of the risk assessment showed that the non-carcinogenic health risk of heavy metals in fine particulate matter is acceptable to the human body, while among the carcinogenic elements, the order of lifetime carcinogenic risk is arsenic (As) > chromium(Cr) > cadmium (Cd) > cobalt(Co) > nickel (Ni). During periods of haze pollution, the exposure concentration of PM2.5 has a certain lag effect on blood routine parameters. On the day when haze pollution occurs, when the daily average concentration of PM2.5 rises by 10 μg·m−3, hemoglobin (HGB) and platelet count (PLT) increase, respectively, by 9.923% (95% CI, 8.741–11.264) and 0.068% (95% CI, 0.067–0.069). GAM model analysis predicted the maximum effect of PM2.5 exposure concentration on red blood cell count (RBC) and PLT was reached when the hysteresis accumulates for 1d (Lag0). The maximum effect of exposure concentration ofPM2.5 on MONO is reached when the lag accumulation is 3d (Lag2). When the hysteresis accumulates for 6d (Lag5), the exposure concentration of PM2.5 has the greatest effect on HGB. The maximum cumulative effect of PM2.5 on neutrophil count (NEUT) and lymphocyte (LMY) was strongest when the lag was 2d (Lag1). During periods of moderate to severe pollution, the concentration of water-soluble ions and heavy metal elements in PM2.5 increases significantly and has a significant correlation with some blood routine indicators.


1972 ◽  
Vol 56 (2) ◽  
pp. 493-499
Author(s):  
N. J. LANE ◽  
J. E. TREHERNE

1. Ultrastructural observations on the uptake of an exogenous tracer substance, horseradish peroxidase (M.W. 40,000), have shown that this large molecule can penetrate the neural lamella in intact cerebro-visceral connectives of the lamellibranch, Anodonta cygnea. 2. Peroxidase molecules were also observed to penetrate between the intercellular clefts formed by adjacent membranes of the underlying peripheral glial cell layer and to move extensively into the underlying extracellular spaces. 3. These observations confirm the results of previous electrophysiological, radioisotopic and ultrastructural investigations indicating that a relatively rapid exchange of water-soluble ions and molecules occurs between the blood, or bathing medium, and the extracellular fluid bathing the axon surfaces in intact connectives.


2018 ◽  
Vol 18 (23) ◽  
pp. 17177-17190 ◽  
Author(s):  
Peng Sun ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Yuning Xie ◽  
Xin Huang ◽  
...  

Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 (particulate matter with diameters less than 2.5 µm) nitrate for 2 years from March 2014 to February 2016 using the Monitor for AeRosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed, with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed, with the concentrations in winter on average 2 times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by thermodynamic equilibrium, resulting in a much lower concentration during daytime despite a considerable photochemical production. Air masses from the polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate did not reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. A total of 18 nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 % of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in the YRD during winter, and illustrated the urgent need to control NOx emission.


2017 ◽  
Vol 55 ◽  
pp. 146-156 ◽  
Author(s):  
Yongjie Yang ◽  
Rui Zhou ◽  
Yue Yu ◽  
Yan Yan ◽  
Yan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document