scholarly journals Sampling Errors in Observed Gravity Wave Momentum Fluxes from Vertical and Tilted Profiles

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Simon B. Vosper ◽  
Andrew N. Ross

Observations from radiosondes or from vertically pointing remote sensing profilers are often used to estimate the vertical flux of momentum due to gravity waves. For planar, monochromatic waves, these vertically integrated fluxes are equal to the phase averaged flux and equivalent to the horizontal averaging used to deduce momentum flux from aircraft data or in numerical models. Using a simple analytical solution for two-dimensional hydrostatic gravity waves over an isolated ridge, it is shown that this equivalence does not hold for mountain waves. For a vertical profile, the vertically integrated flux estimate is proportional to the horizontally integrated flux and decays with increasing distance of the profile location from the mountain. For tilted profiles, such as those obtained from radiosonde ascents, there is a further sampling error that increases as the trajectory extends beyond the localised wave field. The same sampling issues are seen when the effects of the Coriolis force on the gravity waves are taken into account. The conclusion of this work is that caution must be taken when using radiosondes or other vertical profiles to deduce mountain wave momentum fluxes.

Author(s):  
David C. Fritts ◽  
Thomas S. Lund ◽  
Kam Wan ◽  
Han-Li Liu

AbstractA companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes.


2018 ◽  
Vol 75 (8) ◽  
pp. 2721-2740 ◽  
Author(s):  
Christopher G. Kruse ◽  
Ronald B. Smith

AbstractMountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.


2017 ◽  
Vol 74 (5) ◽  
pp. 1381-1402 ◽  
Author(s):  
Ronald B. Smith ◽  
Christopher G. Kruse

Abstract Recent airborne mountain-wave measurements over New Zealand in the lower stratosphere during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign allow for improved spectral analysis of velocities u, υ, and w, pressure p, and temperature T fluctuations. Striking characteristics of these data are the spectral breadth and the different spectral shapes of the different physical quantities. Using idealized complex terrain as a guide, the spectra are divided into the long-wave “volume mode” arising from airflow over the whole massif and the short-wave “roughness mode” arising from flow into and out of valleys. The roughness mode is evident in the aircraft data as an intense band of w power from horizontal wavelength λ = 8–40 km. The shorter part of this band (i.e., λ = 8–15 km) falls near the nonhydrostatic buoyancy cutoff (λ = 2πU/N). It penetrates easily into the lower stratosphere but carries little u power or momentum flux. The longer part of this roughness mode (i.e., λ = 15–40 km) carries most of the wave momentum flux. The volume mode for New Zealand, in the range λ = 200–400 km, is detected using the u-power, p-power, and T-power spectra. Typically, the volume mode carries a third or less of the total wave momentum flux, but it dominates the u power and thus may control the wave breakdown aloft. Spectra from numerical simulations agree with theory and aircraft data. Problems with the monochromatic assumption for wave observation and momentum flux parameterization are discussed.


2012 ◽  
Vol 69 (12) ◽  
pp. 3733-3744 ◽  
Author(s):  
Xin Xu ◽  
Yuan Wang ◽  
Ming Xue

Abstract Linear mountain wave theory is used to derive the general formulas of the gravity wave momentum flux (WMF) and its vertical divergence that develop in directionally sheared flows with constant vertical shear. Height variations of the WMF and its vertical divergence are studied for a circular bell-shaped mountain. The results show that the magnitude of the WMF decreases with height owing to variable critical-level height for different wave components. This leads to continuous—rather than abrupt—absorption of surface-forced gravity waves, and the rate of absorption is largely determined by the maximum turning angle of the wind with height. For flows turning substantially with height, the wave momentum is primarily trapped in the lower atmosphere. Otherwise, it can be transported to the upper levels. The vertical divergence of WMF is oriented perpendicularly to the right (left) of the mean flow that veers (backs) with height except at the surface, where it vanishes. First, the magnitude of the WMF divergence increases with height until reaching its peak value. Then, it decreases toward zero above that height. The altitude of peak WMF divergence is proportional to the surface wind speed and inversely proportional to the vertical wind shear magnitude, increasing as the maximum wind turning angle increases. The magnitude of the peak WMF divergence also increases with the maximum wind turning angle, but it in general decreases as the ambient flow Richardson number increases. Implications of the findings for treating mountain gravity waves in numerical models are discussed.


2013 ◽  
Vol 26 (17) ◽  
pp. 6383-6405 ◽  
Author(s):  
Marvin A. Geller ◽  
M. Joan Alexander ◽  
Peter T. Love ◽  
Julio Bacmeister ◽  
Manfred Ern ◽  
...  

Abstract For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations, MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.


2017 ◽  
Vol 74 (6) ◽  
pp. 1783-1798 ◽  
Author(s):  
Xin Xu ◽  
Jinjie Song ◽  
Yuan Wang ◽  
Ming Xue

Abstract This work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models). Under the Wentzel–Kramers–Brillouin (WKB) approximation, analytical solutions are derived for hydrostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporates both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are validated against numerical simulations conducted using the Advanced Regional Prediction System (ARPS). In the situation of idealized terrain, wind, and stratification, the WMF obtained from the GBA shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing the WMF is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some biases between the WKB GBA and simulated WMFs, arising from, for example, the missing physics of wave reflection. Nonetheless, the decreasing trend of finite-domain WMF with height, because of the horizontal propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison with the traditional OGWD parameterization scheme reveals that the GBA-based scheme tends to produce OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave amplitude and thus inhibit wave breaking.


2017 ◽  
Vol 74 (4) ◽  
pp. 1075-1093 ◽  
Author(s):  
Riwal Plougonven ◽  
Valérian Jewtoukoff ◽  
Alvaro de la Cámara ◽  
François Lott ◽  
Albert Hertzog

Abstract The relationship between gravity wave momentum fluxes and local wind speed is investigated for oceanic regions at high southern latitudes during austral spring. The motivation is to better describe the gravity wave field by identifying a simple relationship between gravity waves and the large-scale flow. The tools used to describe the gravity waves are probability density functions of the gravity wave momentum fluxes. Three independent datasets covering high latitudes in the Southern Hemisphere springtime are analyzed: simulations with a mesoscale model, analyses from the European Centre for Medium-Range Weather Forecasts, and observations from superpressure balloons of the Concordiasi campaign in 2010. A remarkably robust relation is found, with stronger momentum fluxes much more likely in regions of strong winds. The tails of the probability density functions are well described as lognormal. The median momentum flux increases linearly with background wind speed: for winds stronger than 50 m s−1, the median gravity wave momentum fluxes are about 4 times larger than for winds weaker than 10 m s−1. From model output, this relation is found to be relevant from the tropopause to the midstratosphere at least. The flux dependence on wind speed shows a somewhat steeper slope at higher altitude. Several different processes contribute to this relation, involving both the distribution of sources and the effects of propagation and filtering. It is argued that the location of tropospheric sources is the main contributor in the upper troposphere and lowermost stratosphere and that lateral propagation into regions of strong winds becomes increasingly important above.


2008 ◽  
Vol 65 (10) ◽  
pp. 3056-3070 ◽  
Author(s):  
Albert Hertzog ◽  
Gillian Boccara ◽  
Robert A. Vincent ◽  
François Vial ◽  
Philippe Cocquerez

The stratospheric gravity wave field in the Southern Hemisphere is investigated by analyzing observations collected by 27 long-duration balloons that flew between September 2005 and February 2006 over Antarctica and the Southern Ocean. The analysis is based on the methods introduced by Boccara et al. in a companion paper. Special attention is given to deriving information useful to gravity wave drag parameterizations employed in atmospheric general circulation models. The balloon dataset is used to map the geographic variability of gravity wave momentum fluxes in the lower stratosphere. This flux distribution is found to be very heterogeneous with the largest time-averaged value (28 mPa) observed above the Antarctic Peninsula. This value exceeds by a factor of ∼10 the overall mean momentum flux measured during the balloon campaign. Zonal momentum fluxes were predominantly westward, whereas meridional momentum fluxes were equally northward and southward. A local enhancement of southward flux is nevertheless observed above Adélie Land and is attributed to waves generated by katabatic winds, for which the signature is otherwise rather small in the balloon observations. When zonal averages are performed, oceanic momentum fluxes are found to be of similar magnitude to continental values (2.5–3 mPa), stressing the importance of nonorographic gravity waves over oceans. Last, gravity wave intermittency is investigated. Mountain waves appear to be significantly more sporadic than waves observed above the ocean.


2019 ◽  
Vol 76 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Dale R. Durran ◽  
Maximo Q. Menchaca

Abstract The influence of vertical shear on the evolution of mountain-wave momentum fluxes in time-varying cross-mountain flows is investigated by numerical simulation and analyzed using ray tracing and the WKB approximation. The previously documented tendency of momentum fluxes to be strongest during periods of large-scale cross-mountain flow acceleration can be eliminated when the cross-mountain wind increases strongly with height. In particular, the wave packet accumulation mechanism responsible for the enhancement of the momentum flux during periods of cross-mountain flow acceleration is eliminated by the tendency of the vertical group velocity to increase with height in a mean flow with strong forward shear, thereby promoting vertical separation rather than concentration of vertically propagating wave packets.


2006 ◽  
Vol 21 (1) ◽  
pp. 42-68 ◽  
Author(s):  
Stephen D. Eckermann ◽  
Andreas Dörnbrack ◽  
Harald Flentje ◽  
Simon B. Vosper ◽  
M. J. Mahoney ◽  
...  

Abstract The results of a multimodel forecasting effort to predict mountain wave–induced polar stratospheric clouds (PSCs) for airborne science during the third Stratospheric Aerosol and Gas Experiment (SAGE III) Ozone Loss and Validation Experiment (SOLVE)/Third European Stratospheric Experiment on Ozone (THESEO 2000) Arctic ozone campaign are assessed. The focus is on forecasts for five flights of NASA's instrumented DC-8 research aircraft in which PSCs observed by onboard aerosol lidars were identified as wave related. Aircraft PSC measurements over northern Scandinavia on 25–27 January 2000 were accurately forecast by the mountain wave models several days in advance, permitting coordinated quasi-Lagrangian flights that measured their composition and structure in unprecedented detail. On 23 January 2000 mountain wave ice PSCs were forecast over eastern Greenland. Thick layers of wave-induced ice PSC were measured by DC-8 aerosol lidars in regions along the flight track where the forecasts predicted enhanced stratospheric mountain wave amplitudes. The data from these flights, which were planned using this forecast guidance, have substantially improved the overall understanding of PSC microphysics within mountain waves. Observations of PSCs south of the DC-8 flight track on 30 November 1999 are consistent with forecasts of mountain wave–induced ice clouds over southern Scandinavia, and are validated locally using radiosonde data. On the remaining two flights wavelike PSCs were reported in regions where no mountain wave PSCs were forecast. For 10 December 1999, it is shown that locally generated mountain waves could not have propagated into the stratosphere where the PSCs were observed, confirming conclusions of other recent studies. For the PSC observed on 14 January 2000 over northern Greenland, recent work indicates that nonorographic gravity waves radiated from the jet stream produced this PSC, confirming the original forecast of no mountain wave influence. This forecast is validated further by comparing with a nearby ER-2 flight segment to the south of the DC-8, which intercepted and measured local stratospheric mountain waves with properties similar to those predicted. In total, the original forecast guidance proves to be consistent with PSC data acquired from all five of these DC-8 flights. The work discussed herein highlights areas where improvements can be made in future wave PSC forecasting campaigns, such as use of anelastic rather than Boussinesq linearized gridpoint models and a need to forecast stratospheric gravity waves from sources other than mountains.


Sign in / Sign up

Export Citation Format

Share Document