scholarly journals A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nathsuda Pumijumnong ◽  
Achim Bräuning ◽  
Masaki Sano ◽  
Takeshi Nakatsuka ◽  
Chotika Muangsong ◽  
...  
2013 ◽  
Vol 9 (6) ◽  
pp. 6287-6309
Author(s):  
T.-Y. Li ◽  
C.-C. Shen ◽  
L.-J. Huang ◽  
X.-Y. Jiang ◽  
X.-L. Yang ◽  
...  

Abstract. The orbital-timescale dynamics of the Quaternary Asian summer monsoons (ASM) are frequently attributed to precession-dominated Northern Hemisphere summer insolation. However, this ASM variability is inferred primarily from oxygen isotope records of stalagmites, mainly from Sanbao cave in mainland China, and may not provide a comprehensive picture of ASM evolution. A new spliced stalagmite oxygen isotope record from Yangkou cave tracks summer monsoon precipitation variation from 124–206 thousand years ago in Chongqing, southwest China. When superimposed on the Sanbao record, the Yangkou-inferred precipitation time series is shown to support the strong ASM periods at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency confirms that ASM events affected most of mainland China. We show that change in glacial/interglacial (G/IG) ASM intensity was also governed by the Walker Circulation by combining our results with published paleo-Pacific thermal and salinity records. One of the strongest ASM events over the past fiver G/IG cycles, at MIS 6.5, was enhanced by such zonal forcing associated with prevailing trade winds in the Pacific.


2021 ◽  
Author(s):  
Toru Terao ◽  
Fumie Murata ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The Asian summer monsoon system is the strongest monsoon circulation on the Earth. A huge reversal of meridional temperature gradient develops over the area covering the hemispheric region due to strong diabatic heating associated with convective activities. Vigorous conventions reach the upper troposphere providing a great amount of high potential temperature airmass. This high potential temperature air mass originates from the high equivalent potential temperature airmass accumulated in the lower troposphere over the Asian monsoon region. The highest potential temperature tropospheric air mass is observed only over the Asian summer monsoon region. To get a total view of the Asian summer monsoon circulation system, we focused on the mass budget of the upper-tropospheric air mass with a potential temperature between 355K to 370K. The non-conservative change of the air mass corresponds with the diabatic heating due to the convective activities, and the diabatic cooling due to the radiative process. To analyze the radiative cooling process that takes place in the upper troposphere, we utilized hourly GSMaP pixel values to detect rain-free pixels of the ERA5 dataset. We calculated the non-conservative air mass tendency over the rain-free pixels on a daily and 0.5 degrees spatio-temporal scale. We found the radiative equilibrium amount of high potential temperature air mass and the Newtonian cooling process with a relaxation time scale of 6 to 7 days. We will show the quantitative estimates of the total convective process of the Asian summer monsoon system associated with the convective clouds and radiative processes, through the mass budget of 355K-370K potential temperature air mass. We will further show results of the evaluation of the accuracy of TRMM and GPM products using our high-resolution tipping bucket raingauge network distributed over the Northeastern Indian subcontinent.</p>


2020 ◽  
Author(s):  
Shiwansha Mishra ◽  
Dilip Ganguly ◽  
Puneet Sharma

<p>While the monsoon onset is recognized as a rapid, substantial, and sustained increase in rainfall over large parts of south Asia, the withdrawal marks the return to dry conditions. Normally, the south Asian summer monsoon onset occurs around 1<sup>st</sup> June over extreme south of peninsular India, which gradually advances to extreme northwest of India by around 15<sup>th</sup> July. The withdrawal starts from northwest India from around 1st September and from extreme south peninsular India by around 30th September. The determinations of the onset and withdrawal dates of monsoon have great economic significance for this region as they influence many agriculture and water resource management decisions in one of the most highly populated regions of the world. Several studies involving global model simulations have shown that changing aerosol emissions could result in significant changes in the seasonal mean precipitation distribution over India. A few studies also show that presence of absorbing aerosols in the foothills of Himalayas and over the Tibetan plateau could increase the moisture convergence over India thereby causing an advancement and intensification of the monsoon precipitation. However, most of the previous studies, which investigated the impact of anthropogenic emissions on the monsoon, are limited to understanding the impact of various emission changes on the seasonal mean monsoon characteristics. In the present study, we try to understand the sensitivity of the onset and withdrawal period of the south Asian summer monsoon system to changes in anthropogenic emissions using a climate model (CESM1.2). We diagnose the onset and withdrawal of the south Asian monsoon by analyzing the variability in vertically integrated moisture transport (VIMT) over the south Asian region and following the definition of hydrologic onset and withdrawal index (HOWI) defined by Fasullo et al. (2002). We examined the effect of changing emissions anthropogenic aerosol, greenhouse gases and both on the onset and withdrawal of the south Asian summer monsoon system. Our preliminary results suggest that increases in the emissions of aerosols and greenhouse gases from anthropogenic sources from pre-industrial to present day could possibly result in significant delay in the onset and advancement in withdrawal of the south Asian summer monsoon system thereby shortening the length of the monsoon season. More results with greater detail will be presented.</p>


2018 ◽  
Author(s):  
Yesi Zhao ◽  
Jiangfeng Shi ◽  
Shiyuan Shi ◽  
Xiaoqi Ma ◽  
Weijie Zhang ◽  
...  

Abstract. Historical hydroclimate records derived from tree-ring parameters are scarce in the core region of East Asian Summer Monsoon (EASM) in China, limiting our understanding of the inter-decadal hydroclimate variability of this region and its possible connections with the EASM. In this study, standard chronologies of total tree-ring width (TRW), earlywood width (EWW), and latewood width (LWW) were created using tree-ring samples of Pinus tabulaeformis in the eastern Qinling Mountains, Central China. The strongest growth-climate relationship was found between EWW and May–July self-calibrated Palmer Drought Severity Index (MJJ scPDSI). Therefore, a linear regression model, which explained 50.3 % of the variance in MJJ scPDSI (1951–2005), was developed to estimate the past MJJ scPDSI variations using EWW. The time series of MJJ scPDSI was extended back to the year 1866, and validated by independent hydroclimate series from nearby regions. Before the mid-1950s, the variations of MJJ scPDSI were in-phase with those of EASM intensity on decadal and longer timescales, suggesting that wet conditions would occur in the eastern Qinling Mountains when EASM was strengthened. Since the mid-1950s, however, the relationship has been out-of-phase. This phase change may be associated with an intensified dipole pattern of EASM precipitation.


Sign in / Sign up

Export Citation Format

Share Document