scholarly journals A Novel Method for Carbonate Quantification in Atmospheric Particulate Matter

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 661
Author(s):  
Denise C. Napolitano ◽  
Hilairy E. Hartnett ◽  
Pierre Herckes

Inorganic carbonate can be an important component of atmospheric particulate matter in arid environments where mineral dust components contribute significantly to air particulate matter. Carbonate carbon (CC) is only rarely quantified in atmospheric studies and methods to quantify carbonate in atmospheric samples are rare. In this manuscript, we present a novel protocol for quantifying carbonate carbon in atmospheric particulate matter samples, through the acidification of aerosol filters at ambient pressure and temperature and subsequent measurement of carbon dioxide (CO2) released upon acidification. This method is applicable to a variety of filter media used in air pollution studies, such as Teflon, cellulose, or glass fiber filters. The method allows the customization of the filter area used for analysis (up to 24 cm2) so that sufficient CO2 can be detected when released and to assure that the sample aliquot is representative of the whole filter. The resulting detection limits can be as low as 0.12 µg/cm2. The analysis of a known amount of sodium bicarbonate applied to a filter resulted in a relative error within 15% of the known mass of bicarbonate when measured 20 min after acidification. A particulate matter sample with aerodynamic diameter larger than 2.5 µm (PM>2.5) collected via cascade impaction on a high-volume aerosol sampler yielded good precision, with a CC concentration of 4.4 ± 0.3 µgC/cm2 for six replicates. The precision, accuracy, and reproducibility of this method of CC measurement make it a good alternative to existing quantification methods.

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Katalin Hubai ◽  
Nora Kováts ◽  
Gábor Teke

AbstractAtmospheric particulate matter (PM) is one of the major environmental concerns in Europe. A wide range of studies has proved the ecotoxic potential of atmospheric particles. PM exerts chemical stress on vegetation by its potentially toxic constituents; however, relatively few studies are available on assessing phytotoxic effects under laboratory conditions. In our study, aqueous extract of particulate matter was prepared and used for treatment. Experiment was following the procedure defined by the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test. Tomato (Lycopersicon esculentum Mill.) plants were used; elucidated toxicity was assessed based on morphological and biochemical endpoints such as biomass, chlorophyll-a and chlorophyll-b, carotenoids, and protein content. Biomass reduction and protein content showed a clear dose–effect relationship; the biomass decreased in comparison with the control (100%) in all test groups (TG) at a steady rate (TG1: 87.73%; TG2: 71.77%; TG3: 67.01%; TG4: 63.63%). The tendency in protein concentrations compared to the control was TG1: 113.61%; TG2: 148.21% TG3: 160.52%; TG4: 157.31%. However, pigments showed a ‘Janus-faced’ effect: nutrient content of the sample caused slight increase at lower doses; actual toxicity became apparent only at higher doses (chlorophyll-a concentration decrease was 84.47% in TG4, chlorophyll-b was 77.17%, and finally, carotene showed 83.60% decrease in TG4).


Author(s):  
Jesús Eulises Corona Sánchez ◽  
Ma del Carmen Angeles González Chávez ◽  
Rogelio Carrillo González ◽  
Kirk Scheckel ◽  
Daniel Tapia Maruri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document