scholarly journals Flash Flood and Extreme Rainfall Forecast through One-Way Coupling of WRF-SMAP Models: Natural Hazards in Rio de Janeiro State

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 834
Author(s):  
Priscila da Cunha Luz Barcellos ◽  
Marcio Cataldi

Flash floods and extreme rains are destructive phenomena and difficult to forecast. In 2011, the mountainous region of Rio de Janeiro state suffered one of the largest natural hazards in Brazil, affecting more than 300,000 people, leaving more than 900 dead. This article simulates this natural hazard through Quantitative Precipitation Forecasting (QPF) and streamflow forecast ensemble, using 18 combinations of parameterizations between cumulus, microphysics, surface layer, planetary boundary layer, land surface and lateral contour conditions of the Weather Research and Forecasting (WRF) Model, coupling to the Soil Moisture Accounting Procedure (SMAP) hydrological model, seeking to find the best set of parametrizations for the forecasting of extreme events in the region. The results showed rainfall and streamflow forecast were underestimated by the models, reaching an error of 57.4% to QPF and 24.6% error to streamflow, and part of these errors are related to the lack of skill of the atmospheric model in predicting the intensity and the spatial-temporal distribution of rainfall. These results bring to light the limitations of numerical weather prediction, possibly due to the lack of initiatives involving the adaptation of empirical constants, intrinsic in the parametrization models, to the specific atmospheric conditions of each region of the country.

2021 ◽  
Vol 4 ◽  
pp. 50-68
Author(s):  
S.А. Lysenko ◽  
◽  
P.О. Zaiko ◽  

The spatial structure of land use and biophysical characteristics of land surface (albedo, leaf index, and vegetation cover) are updated using the GLASS (Global Land Surface Satellite) and GLC2019 (Global Land Cover, 2019) modern satellite databases for mesoscale numerical weather prediction with the WRF model for the territory of Belarus. The series of WRF-based numerical experiments was performed to verify the influence of the updated characteristics on the forecast quality for some difficult to predict winter cases. The model was initialized by the GFS (Global Forecast System, NCEP) global numerical weather prediction model. It is shown that the use of high-resolution land use data in the WRF and the consideration of the new albedo and leaf index distribution over the territory of Belarus can reduce the root-mean-square error (RMSE) of short-range (to 48 hours) forecasts of surface air temperature by 16–33% as compared to the GFS. The RMSE of the temperature forecast for the weather stations in Belarus for a forecast lead time of 12, 24, 36, and 48 hours decreased on average by 0.40°С (19%), 0.35°С (10%), 0.68°С (23%), and 0.56°С (15%), respectively. The most significant decrease in RMSE of the numerical forecast of temperature (up to 2.1 °С) was obtained for the daytime (for a lead time of 12 and 36 hours), when positive feedbacks between albedo and temperature of the land surface are manifested most. Keywords: numerical weather prediction, WRF, digital land surface model, albedo, leaf area index, forecast model validation


2018 ◽  
Vol 19 (12) ◽  
pp. 1917-1933 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jifu Yin ◽  
Jicheng Liu

Abstract Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges. It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component of a number of operational numerical weather prediction models at the National Centers for Environmental Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple linear conversion of either the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible Infrared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple spectral index of vegetation cover, GVFs derived from them may lack the biophysical meaning required in the Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation methods are mathematically analyzed and are found to be significantly different from each other. Impacts of GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-based one when used in both the offline Noah LSM and WRF Model.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 815
Author(s):  
Marcelo Somos-Valenzuela ◽  
Francisco Manquehual-Cheuque

The use of numerical weather prediction (NWP) model to dynamically downscale coarse climate reanalysis data allows for the capture of processes that are influenced by land cover and topographic features. Climate reanalysis downscaling is useful for hydrology modeling, where catchment processes happen on a spatial scale that is not represented in reanalysis models. Selecting proper parameterization in the NWP for downscaling is crucial to downscale the climate variables of interest. In this work, we are interested in identifying at least one combination of physics in the Weather Research Forecast (WRF) model that performs well in our area of study that covers the Baker River Basin and the Northern Patagonian Icecap (NPI) in the south of Chile. We used ERA-Interim reanalysis data to run WRF in twenty-four different combinations of physics for three years in a nested domain of 22.5 and 4.5 km with 34 vertical levels. From more to less confident, we found that, for the planetary boundary layer (PBL), the best option is to use YSU; for the land surface model (LSM), the best option is the five-Layer Thermal, RRTM for longwave, Dudhia for short wave radiation, and Thompson for the microphysics. In general, the model did well for temperature (average, minimum, maximum) for most of the observation points and configurations. Precipitation was good, but just a few configurations stood out (i.e., conf-9 and conf-10). Surface pressure and Relative Humidity results were not good or bad, and it depends on the statistics with which we evaluate the time series (i.e., KGE or NSE). The results for wind speed were inferior; there was a warm bias in all of the stations. Once we identify the best configuration in our experiment, we run WRF for one year using ERA5 and FNL0832 climate reanalysis. Our results indicate that Era-interim provided better results for precipitation. In the case of temperature, FNL0832 gave better results; however, all of the models’ performances were good. Therefore, working with ERA-Interim seems the best option in this region with the physics selected. We did not experiment with changes in resolution, which may have improved results with ERA5 that has a better spatial and temporal resolution.


2020 ◽  
Author(s):  
Elcin Tan

<p>A debate on the probable Istanbul Isthmus Project that may have catastrophic impacts on our ecosystem has been recently accelerated in public, due to the fact that the approved environmental impact assessment (EIA) report of the hypothetical Istanbul Isthmus (HII) Project has recently been announced. The EIA report indicates that the assessment covers only the current conditions and the conditions that may arise during the construction of the HII. Unfortunately, The EIA report did not evaluate the climate change impact on either the Istanbul Area or Mediterranean Region after the inclusion of the HII, only the current conditions were evaluated. Therefore, the aim of this study is to investigate the impact of HII on the climate of the Mediterranean Region. The climate version of the WRF Model is utilized with 9 km resolution for the Region 12: Mediterranean (CORDEX) for the historical conditions and RCP8.5 scenarios of available climate model results from CMIP5 and CMIP6 projects. Land surface and land use maps are prepared by following the EIA report if the necessary information is included, otherwise, the current conditions are applied. The atmospheric conditions were not coupled to an Ocean Model, only the Sea Surface Temperature (SST) values of the Ocean Models are coupled to the WRF model during both historical and future simulations. The model results are evaluated in terms of temperature, precipitation, and sea-level changes. Consequently, the results indicate that the HII may decrease the resilience of the Mediterranean Region to Climate Change.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 304 ◽  
Author(s):  
Gonzalo Yáñez-Morroni ◽  
Jorge Gironás ◽  
Marta Caneo ◽  
Rodrigo Delgado ◽  
René Garreaud

The Weather Research and Forecasting (WRF) model has been successfully used in weather prediction, but its ability to simulate precipitation over areas with complex topography is not optimal. Consequently, WRF has problems forecasting rainfall events over Chilean mountainous terrain and foothills, where some of the main cities are located, and where intense rainfall occurs due to cutoff lows. This work analyzes an ensemble of microphysics schemes to enhance initial forecasts made by the Chilean Weather Agency in the front range of Santiago. We first tested different vertical levels resolution, land use and land surface models, as well as meteorological forcing (GFS/FNL). The final ensemble configuration considered three microphysics schemes and lead times over three rainfall events between 2015 and 2017. Cutoff low complex meteorological characteristics impede the temporal simulation of rainfall properties. With three days of lead time, WRF properly forecasts the rainiest N-hours and temperatures during the event, although more accuracy is obtained when the rainfall is caused by a meteorological frontal system. Finally, the WSM6 microphysics option had the best performance, although further analysis using other storms and locations in the area are needed to strengthen this result.


2020 ◽  
Author(s):  
Julia Jeworrek ◽  
Gregory West ◽  
Roland Stull

<p>Canada’s west coast topography plays a crucial role for the local precipitation patterns, which are often shaped by orographic lifting on one side of the mountains, and rain shadows on the other side. The hydroelectric infrastructure in southwest British Columbia (BC) relies heavily on the abundant rainfall of the wet season, but long lasting and heavy precipitation can cause local flooding and make reliable precipitation forecasts crucial for resource management, risk assessment, and disaster mitigation.</p><p>This research evaluates hourly precipitation forecasts from the Weather Research and Forecasting (WRF) model over the complex terrain of southwest BC. The model data includes a full year of daily runs across three nested domains (27-9-3 km). A selection of different parameterizations is systematically varied, including microphysics, cumulus, turbulence, and land-surface parameterizations. The resulting over 100 model configurations are evaluated with observations from ground-based quality-controlled precipitation gauges. The individual model skill of the precipitation forecasts is assessed with respect to different accumulation windows, forecast horizons, grid resolutions, and precipitation intensities. Furthermore, the ensemble mean and spread provide insight to the general error growth for precipitation forecasts in WRF.</p><p>Cumulus and microphysics parameterizations together determine the total precipitation in numerical weather prediction models and this study confirms the expectation that the combination of those physics parameterizations is most decisive for the precipitation forecasts. However, the boundary-layer and land-surface parameterizations have a secondary effect on precipitation skill. The verification shows that the WSM5 microphysics parameterization yields surprisingly competitive verification scores when compared to more sophisticated and computationally expensive parameterizations. Although, the scale-aware Grell-Freitas cumulus parameterization performs better for summer-time convective precipitation, the conventional Kain-Fritsch parameterization performs better for winter-time frontal precipitation, which contributes to the majority of the annual rainfall in southwest BC.</p><p>Throughout a 3-day forecast horizon mean absolute errors are observed to grow by ~5% per forecast day. Furthermore, this study indicates that coarser resolutions suffer from larger total biases and larger random error components, however, they have slightly higher correlation coefficients. The mid-size 9-km domain yields the highest relative hit rate for significant and extreme precipitation. Verification metrics improve exponentially with longer accumulation windows: On one side, hourly precipitation values are highly prone to double-penalty issues (where a timing error can, for example, result in an over-forecast error in one hour and an under-forecast in a subsequent hour); on the other side, extended accumulation windows can compensate for timing errors, but lose information about short-term rain intensities.</p>


2020 ◽  
Vol 102 (3) ◽  
pp. 1117-1134
Author(s):  
Marianna Rodrigues Gullo Cavalcante ◽  
Priscila da Cunha Luz Barcellos ◽  
Marcio Cataldi

2011 ◽  
Vol 12 (6) ◽  
pp. 1221-1254 ◽  
Author(s):  
Craig R. Ferguson ◽  
Eric F. Wood

Abstract The lack of observational data for use in evaluating the realism of model-based land–atmosphere feedback signal and strength has been deemed a major obstacle to future improvements to seasonal weather prediction by the Global Land–Atmosphere Coupling Experiment (GLACE). To address this need, a 7-yr (2002–09) satellite remote sensing data record is exploited to produce for the first time global maps of predominant coupling signals. Specifically, a previously implemented convective triggering potential (CTP)–humidity index (HI) framework for describing atmospheric controls on soil moisture–rainfall feedbacks is revisited and generalized for global application using CTP and HI from the Atmospheric Infrared Sounder (AIRS), soil moisture from the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E), and the U.S. Climate Prediction Center (CPC) merged satellite rainfall product (CMORPH). Based on observations taken during an AMSR-E-derived convective rainfall season, the global land area is categorized into four convective regimes: 1) those with atmospheric conditions favoring deep convection over wet soils, 2) those with atmospheric conditions favoring deep convection over dry soils, 3) those with atmospheric conditions that suppress convection over any land surface, and 4) those with atmospheric conditions that support convection over any land surface. Classification maps are produced using both the original and modified frameworks, and later contrasted with similarly derived maps using inputs from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective Analysis for Research and Applications (MERRA). Both AIRS and MERRA datasets of CTP and HI are validated using radiosonde observations. The combinations of methods and data sources employed in this study enable evaluation of not only the sensitivity of the classification schemes themselves to their inputs, but also the uncertainty in the resultant classification maps. The findings are summarized for 20 climatic regions and three GLACE coupling hot spots, as well as zonally and globally. Globally, of the four-class scheme, regions for which convection is favored over wet and dry soils accounted for the greatest and least extent, respectively. Despite vast differences among the maps, many geographically large regions of concurrence exist. Through its ability to compensate for the latitudinally varying CTP–HI–rainfall tendency characteristics observed in this study, the revised classification framework overcomes limitations of the original framework. By identifying regions where coupling persists using satellite remote sensing this study provides the first observationally based guidance for future spatially and temporally focused studies of land–atmosphere interactions. Joint distributions of CTP and HI and soil moisture, rainfall occurrence, and depth demonstrate the relevance of CTP and HI in coupling studies and their potential value in future model evaluation, rainfall forecast, and/or hydrologic consistency applications.


Sign in / Sign up

Export Citation Format

Share Document