Investigation of the Climate Change Effects on the Mediterranean Region with the Hypothetical inclusion of the Istanbul Isthmus

Author(s):  
Elcin Tan

<p>A debate on the probable Istanbul Isthmus Project that may have catastrophic impacts on our ecosystem has been recently accelerated in public, due to the fact that the approved environmental impact assessment (EIA) report of the hypothetical Istanbul Isthmus (HII) Project has recently been announced. The EIA report indicates that the assessment covers only the current conditions and the conditions that may arise during the construction of the HII. Unfortunately, The EIA report did not evaluate the climate change impact on either the Istanbul Area or Mediterranean Region after the inclusion of the HII, only the current conditions were evaluated. Therefore, the aim of this study is to investigate the impact of HII on the climate of the Mediterranean Region. The climate version of the WRF Model is utilized with 9 km resolution for the Region 12: Mediterranean (CORDEX) for the historical conditions and RCP8.5 scenarios of available climate model results from CMIP5 and CMIP6 projects. Land surface and land use maps are prepared by following the EIA report if the necessary information is included, otherwise, the current conditions are applied. The atmospheric conditions were not coupled to an Ocean Model, only the Sea Surface Temperature (SST) values of the Ocean Models are coupled to the WRF model during both historical and future simulations. The model results are evaluated in terms of temperature, precipitation, and sea-level changes. Consequently, the results indicate that the HII may decrease the resilience of the Mediterranean Region to Climate Change.</p>

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


Author(s):  
Dario Conte ◽  
Piero Lionello ◽  
Silvio Gualdi

<p>Dynamical downscaling through coupled regional climate model plays an important role to improve climate information at regional fine-scale, since it modulates information produced by GCM, combining planetary scale processes with regional scale processes.  This study describes the impact of climate change  on rainfall over the Mediterranean region, downscaling, at two different horizontal grid resolutions (0.44 and 0.11 degs), a Global Climate Model (GCM at 0.75 degs) by means of a coupled Regional Climate System Models (RCSM). We analyze the effect of adopting model version with different horizontal resolutions (0.11, 0.44 e 0.75 degs), considering  two climate representative concentration pathways (rcp4.5 and rcp8.5). The spatial pattern on different aspects of precipitation climatology are investigated such as increase/decrease in the intensity of precipitation events, extremes and annual amount of wet days. Moreover, since the grid models cover a wide and complex climate geographic area, the rainfall probability over six sub-regions are calculated: (1) Alps, (2) North-Western coast, (2) South Italy, (3) central part of the Mediterranean sea, (4) Greece Anatolia peninsula and Levantine basin. Although, the evaluation of RCSM downscaling is complex and depends on several factors such as: variables considered, geographic area, topography, model configuration and so on, the results show that it produces an significant improvement, adding information with regards to fine-scale spatial pattern, respect to that provided by GCM.</p><p><strong>ACKNOWLEDGEMENT:</strong> This contribution is based on work conducted by the authors within the SOCLIMPACT project, that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776661. The fullname of the project is "DownScaling CLImate ImPACTs and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and Beyond". The opinions expressed are those of the author(s) only and should not be considered as representative of the European Commission’s official position.</p><p><strong>Keywords:</strong>  widespread heavy rainfall, coupled numerical models, daily rainfall, climate scenarios, climatology of heavy rainfall.</p><p> </p>


2020 ◽  
Author(s):  
Maria-Carmen Llasat ◽  
Tomeu Rigo ◽  
Montserrat Llasat-Botija ◽  
Maria Cortès ◽  
Joan Gilabert ◽  
...  

<p>The Mediterranean region is a hot spot for climate and environmental changes (Cramer et al., 2018). Climate change rates currently observed and expected in future scenarios in this region, exceed the global trends for most variables. Particularly, the average annual mean temperature has risen by 1.4°C since the pre-industrial times and it is expected that it could increase more than 1°C before the end of the century. The Mediterranean coastal zone comprises 75 coastal watersheds and 224 coastal administrative regions, with a total of 46,000 km of coastline.  This coastal zone concentrates about the 50 % of the population of the Mediterranean region while also attracts millions of tourists, supports a large network of infrastructures and, also, supports a large set of coastal and marine ecosystems delivering valuable services.</p><p>Regional climatic and geographical characteristics determine the area to be frequently affected by multiple hydrometeorological hazards such as thunderstorms, floods, windstorms and marine storms. These hazards together with the existence of high values at exposure determine the Mediterranean coastal fringe to be highly vulnerable and subjected to a high risk to the impact of extreme events, which will likely be worsened due to climate change (IPCC, 2018). Due to this, long-term planning of these coastal areas requires a proper assessment of their vulnerability and risk. Usually, this has been done by considering these hazards in an independent manner, although it is clear that a more holistic and integrated approach considering their  interdependencies and feedbacks is needed.</p><p>Within this context, this work  proposes an integrated risk index to classify the Mediterranean coastal municipalities in terms of their susceptibility to be affected by multiple hydrometeorological hazards, which will be later integrated with a similar index for marine  hazards. The index will be tested for a representative Mediterranean coastal area highly affected by hydrometeorological and marine hazards, the Catalonia and Valencia coastal zone (NE Spanish Mediterranean). The indicators represent different system characteristics determining the expected risk: a) climatic, b) geomorphological and  c) impact and perception components. The selected climatic indicators used have been: return period of precipitation, number of lightning strikes and maximum wind speed. Geomorphological indicators include average slope of the catchment area and surface within the municipality. Socioeconomic indicators have been estimated from the economical compensations paid by the Consorcio de Compensación de Seguros (the National insurance company), number of flood events that have affected each municipality estimated from their impact, and population awareness and social impact measured through analysing response in social media (tweets) to the impact of these hazards. Finally, as a matter of validation, the impact of the last flood events affecting this region is compared with the spatial distribution of the developed index.</p><p>This work has been developed in the framework of the M-CostAdapt project (FEDER/MCIU-AEI/CTM2017-83655-C2-2-R) where  the adaptability to Climate Change and natural risks of the Mediterranean coast is analysed by jointly considering natural maritime and terrestrial (hydrometeorological) hazards.</p>


2008 ◽  
Vol 17 ◽  
pp. 49-53 ◽  
Author(s):  
D. Wang ◽  
E. N. Anagnostou ◽  
G. Wang

Abstract. The impact of sub-grid variability of precipitation and canopy water storage is investigated over Central-South Europe by applying a new canopy interception scheme into the Community Atmosphere Model (CAM, Version 3) coupled with the Community Land Model (CLM, Version 3). The study shows that while sub-grid variability exerts great impact on the land surface water budget, the impact on the atmospheric hydrological processes is small and only exception being the Mediterranean region. In this region, incorporation of sub-grid variability is shown to reduce precipitation up to 1 mm/day (or ~8% relative to mean precipitation). The evapotranspiration ratio (ratio of evapotranspiration to total precipitation) exhibited insignificant deviations between the simulations with sub-grid variability and the ones without, which indicates that the local source of moisture is not the cause of the reduced precipitation. On the other hand, inducing sub-grid variability alters the large-scale circulation, which transports less water vapor form Atlantic Ocean to inland areas thus reducing precipitation in the Mediterranean region.


2021 ◽  
Author(s):  
Claudia Gutiérrez ◽  
Alba de la Vara ◽  
Juan Jesús González-Alemán ◽  
Miguel Ángel Gaertner

<p>The enhanced vulnerability of insular regions to climate change highlights the importance of undertaking adaptation and mitigation strategies according to the specific singularities of the islands. Islands are highly dependent on energy imports and the transition to a system with higher shares of renewable energies, in order to reduce greenhouse gas emissions in these regions, can also reduce the external energy dependence. In this context, the assessment of the impact of climate change on renewable energy resources during the 21st century is crucial for policymakers and stakeholders, due to the increasing vulnerability of the system to climate variability. The aim of this work is to provide an overview of wind and photovoltaic (PV) resources, their variability and complementarity between them, as well as their future changes, in the Euro-Mediterranean and Canary islands. Due to the limitations in land surface availability in the islands for the installation of renewable energy capacity, the analysis is extended to offshore wind and photovoltaic energy, which may have an important role in the future increases of renewable energy share. Variability is assessed through the analysis of energy droughts (low-productivity periods). In addition, a case study for optimization of wind and solar combination over the Canary islands is performed. In that sense, a sensitivity test is developed to find the optimal combination of PV and wind that reduce energy droughts and the persistence of that conditions at a local scale. To that end, we use climate variables from a series of regional climate simulations derived from Euro-CORDEX and MENA-CORDEX for the RCP2.6 and RCP8.5 emission scenarios and for the periods 2046-2065 and 2081-2100. The obtained results are very dependent on the region analyzed. Whereas an overall decrease is projected in wind resource over the Mediterranean islands for the future, an increase is projected for the Canarian archipelago. Changes in PV productivity are small in any case, as well as variability changes. These results, which are part of the SOCLIMPACT H2020 project, highlight the importance of targeting climate information and give condensed and valuable data to facilitate climate-related policy decision making for decarbonization and Blue Growth in the islands.</p>


2021 ◽  
Author(s):  
Anastasios Rovithakis ◽  
Apostolos Voulgarakis ◽  
Manolis Grillakis ◽  
Christos Giannakopoulos ◽  
Anna Karali

<p>The Canadian Fire Weather Index (FWI) is a meteorologically based index designed initially to be used in Canada but it can also be used worldwide, including the Mediterranean, to estimate fire danger in a generalized fuel type based solely on weather observations. The four weather variables are measured and used as inputs to the FWI (rain accumulated over 24 h, temperature, relative humidity, and wind speed) are generally taken daily at noon local standard time.</p><p>Recent studies have shown that temperature and precipitation in the Mediterranean, and more specifically in Greece are expected to change, indicating longer and more intense summer droughts that even extend out of season. In connection to this, the frequency of forest fire occurrence and intensity is on the rise. In the present study, the FWI index is used in order to assess changes in future fire danger conditions.</p><p>To represent meteorological conditions, regional EURO-CORDEX climate model simulations over the Mediterranean and mainly Greece at a spatial resolution of 11 km, were utilized. In order to assess the impact of future climate change, we used two Representative Concentration Pathway (RCP) scenarios consisting of an optimistic emission scenario where emissions peak and decline beyond 2020 (RCP2.6) and a pessimistic scenario where emissions continue to rise throughout the century (RCP8.5).  We compare the FWI projections for two future time periods, 2021-2050 and 2071-2100 with reference to the historical time period 1971-2000. Based on the critical fire risk threshold values that have been established in previous studies for the area of Greece, the days with critical fire risk were calculated for different Greek domains.</p>


Author(s):  
Tomas Cejka ◽  
Elizabeth Isaac ◽  
Daniel Oliach ◽  
Fernando Martinez-Pena ◽  
Simon Egli ◽  
...  

Abstract Climate change has been described as the main threat for the cultivation and growth of truffles, but hydroclimate variability and model uncertainty challenge regional projections and adaptation strategies of the emerging sector. Here, we conduct a literature review to define the main Périgord truffle growing regions around the world and use 20 global climate models to assess the impact of future trends and extremes in temperature, precipitation and soil moisture on truffle production rates and price levels in all cultivation regions in the Americas, Europe, South Africa, and Australasia. Climate model simulations project 2.3 million km2 of suitable land for truffle growth will experience 50% faster aridification than the rests of the global land surface, with significantly more heat waves between 2070 and 2099 CE. Overall, truffle production rates will decrease by ~15%, while associated price levels will increase by ~36%. At the same time, a predicted increase in summer precipitation and less intense warming over Australasia will likely alleviate water scarcity and support higher yields of more affordable truffles. Our findings are relevant for truffle farmers and businesses to adapt their irrigation systems and management strategies to future climate change.


2019 ◽  
Vol 19 (8) ◽  
pp. 2621-2635 ◽  
Author(s):  
George Zittis ◽  
Panos Hadjinicolaou ◽  
Marina Klangidou ◽  
Yiannis Proestos ◽  
Jos Lelieveld

AbstractObservation and model-based studies have identified the Mediterranean region as one of the most prominent climate change “hot-spots.” Parts of this distinctive region are included in several Coordinated Regional Downscaling Experiment (CORDEX) domains such as those for Europe, Africa, the Mediterranean, and the Middle East/North Africa. In this study, we compile and analyze monthly temperature and precipitation fields derived from regional climate model simulations performed over different CORDEX domains at a spatial resolution of 50 km. This unique multi-model, multi-scenario, and multi-domain “super-ensemble” is used to update projected changes for the Mediterranean region. The statistical robustness and significance of the climate change signal is assessed. By considering information from more than one CORDEX domains, our analysis addresses an additional type of uncertainty that is often neglected and is related to the positioning of the regional climate model domain. CORDEX simulations suggest a general warming by the end of the century (between 1 and 5 °C with respect to the 1986–2005 reference period), which is expected to be strongest during summer (up to 7 °C). A general drying (between 10 and 40%) is also inferred for the Mediterranean. However, the projected precipitation change signal is less significant and less robust. The CORDEX ensemble corroborates the fact that the Mediterranean is already entering the 1.5 °C climate warming era. It is expected to reach 2 °C warming well within two decades, unless strong greenhouse gas concentration reductions are implemented. The southern part of the Mediterranean is expected to be impacted most strongly since the CORDEX ensemble suggests substantial combined warming and drying, particularly for pathways RCP4.5 and RCP8.5.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document