Predictability of Precipitation in Complex Terrain using the WRF Model with Varying Physics Parameterizations

Author(s):  
Julia Jeworrek ◽  
Gregory West ◽  
Roland Stull

<p>Canada’s west coast topography plays a crucial role for the local precipitation patterns, which are often shaped by orographic lifting on one side of the mountains, and rain shadows on the other side. The hydroelectric infrastructure in southwest British Columbia (BC) relies heavily on the abundant rainfall of the wet season, but long lasting and heavy precipitation can cause local flooding and make reliable precipitation forecasts crucial for resource management, risk assessment, and disaster mitigation.</p><p>This research evaluates hourly precipitation forecasts from the Weather Research and Forecasting (WRF) model over the complex terrain of southwest BC. The model data includes a full year of daily runs across three nested domains (27-9-3 km). A selection of different parameterizations is systematically varied, including microphysics, cumulus, turbulence, and land-surface parameterizations. The resulting over 100 model configurations are evaluated with observations from ground-based quality-controlled precipitation gauges. The individual model skill of the precipitation forecasts is assessed with respect to different accumulation windows, forecast horizons, grid resolutions, and precipitation intensities. Furthermore, the ensemble mean and spread provide insight to the general error growth for precipitation forecasts in WRF.</p><p>Cumulus and microphysics parameterizations together determine the total precipitation in numerical weather prediction models and this study confirms the expectation that the combination of those physics parameterizations is most decisive for the precipitation forecasts. However, the boundary-layer and land-surface parameterizations have a secondary effect on precipitation skill. The verification shows that the WSM5 microphysics parameterization yields surprisingly competitive verification scores when compared to more sophisticated and computationally expensive parameterizations. Although, the scale-aware Grell-Freitas cumulus parameterization performs better for summer-time convective precipitation, the conventional Kain-Fritsch parameterization performs better for winter-time frontal precipitation, which contributes to the majority of the annual rainfall in southwest BC.</p><p>Throughout a 3-day forecast horizon mean absolute errors are observed to grow by ~5% per forecast day. Furthermore, this study indicates that coarser resolutions suffer from larger total biases and larger random error components, however, they have slightly higher correlation coefficients. The mid-size 9-km domain yields the highest relative hit rate for significant and extreme precipitation. Verification metrics improve exponentially with longer accumulation windows: On one side, hourly precipitation values are highly prone to double-penalty issues (where a timing error can, for example, result in an over-forecast error in one hour and an under-forecast in a subsequent hour); on the other side, extended accumulation windows can compensate for timing errors, but lose information about short-term rain intensities.</p>

2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2021 ◽  
Vol 4 ◽  
pp. 50-68
Author(s):  
S.А. Lysenko ◽  
◽  
P.О. Zaiko ◽  

The spatial structure of land use and biophysical characteristics of land surface (albedo, leaf index, and vegetation cover) are updated using the GLASS (Global Land Surface Satellite) and GLC2019 (Global Land Cover, 2019) modern satellite databases for mesoscale numerical weather prediction with the WRF model for the territory of Belarus. The series of WRF-based numerical experiments was performed to verify the influence of the updated characteristics on the forecast quality for some difficult to predict winter cases. The model was initialized by the GFS (Global Forecast System, NCEP) global numerical weather prediction model. It is shown that the use of high-resolution land use data in the WRF and the consideration of the new albedo and leaf index distribution over the territory of Belarus can reduce the root-mean-square error (RMSE) of short-range (to 48 hours) forecasts of surface air temperature by 16–33% as compared to the GFS. The RMSE of the temperature forecast for the weather stations in Belarus for a forecast lead time of 12, 24, 36, and 48 hours decreased on average by 0.40°С (19%), 0.35°С (10%), 0.68°С (23%), and 0.56°С (15%), respectively. The most significant decrease in RMSE of the numerical forecast of temperature (up to 2.1 °С) was obtained for the daytime (for a lead time of 12 and 36 hours), when positive feedbacks between albedo and temperature of the land surface are manifested most. Keywords: numerical weather prediction, WRF, digital land surface model, albedo, leaf area index, forecast model validation


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 834
Author(s):  
Priscila da Cunha Luz Barcellos ◽  
Marcio Cataldi

Flash floods and extreme rains are destructive phenomena and difficult to forecast. In 2011, the mountainous region of Rio de Janeiro state suffered one of the largest natural hazards in Brazil, affecting more than 300,000 people, leaving more than 900 dead. This article simulates this natural hazard through Quantitative Precipitation Forecasting (QPF) and streamflow forecast ensemble, using 18 combinations of parameterizations between cumulus, microphysics, surface layer, planetary boundary layer, land surface and lateral contour conditions of the Weather Research and Forecasting (WRF) Model, coupling to the Soil Moisture Accounting Procedure (SMAP) hydrological model, seeking to find the best set of parametrizations for the forecasting of extreme events in the region. The results showed rainfall and streamflow forecast were underestimated by the models, reaching an error of 57.4% to QPF and 24.6% error to streamflow, and part of these errors are related to the lack of skill of the atmospheric model in predicting the intensity and the spatial-temporal distribution of rainfall. These results bring to light the limitations of numerical weather prediction, possibly due to the lack of initiatives involving the adaptation of empirical constants, intrinsic in the parametrization models, to the specific atmospheric conditions of each region of the country.


2018 ◽  
Vol 19 (12) ◽  
pp. 1917-1933 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jifu Yin ◽  
Jicheng Liu

Abstract Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges. It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component of a number of operational numerical weather prediction models at the National Centers for Environmental Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple linear conversion of either the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible Infrared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple spectral index of vegetation cover, GVFs derived from them may lack the biophysical meaning required in the Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation methods are mathematically analyzed and are found to be significantly different from each other. Impacts of GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-based one when used in both the offline Noah LSM and WRF Model.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 815
Author(s):  
Marcelo Somos-Valenzuela ◽  
Francisco Manquehual-Cheuque

The use of numerical weather prediction (NWP) model to dynamically downscale coarse climate reanalysis data allows for the capture of processes that are influenced by land cover and topographic features. Climate reanalysis downscaling is useful for hydrology modeling, where catchment processes happen on a spatial scale that is not represented in reanalysis models. Selecting proper parameterization in the NWP for downscaling is crucial to downscale the climate variables of interest. In this work, we are interested in identifying at least one combination of physics in the Weather Research Forecast (WRF) model that performs well in our area of study that covers the Baker River Basin and the Northern Patagonian Icecap (NPI) in the south of Chile. We used ERA-Interim reanalysis data to run WRF in twenty-four different combinations of physics for three years in a nested domain of 22.5 and 4.5 km with 34 vertical levels. From more to less confident, we found that, for the planetary boundary layer (PBL), the best option is to use YSU; for the land surface model (LSM), the best option is the five-Layer Thermal, RRTM for longwave, Dudhia for short wave radiation, and Thompson for the microphysics. In general, the model did well for temperature (average, minimum, maximum) for most of the observation points and configurations. Precipitation was good, but just a few configurations stood out (i.e., conf-9 and conf-10). Surface pressure and Relative Humidity results were not good or bad, and it depends on the statistics with which we evaluate the time series (i.e., KGE or NSE). The results for wind speed were inferior; there was a warm bias in all of the stations. Once we identify the best configuration in our experiment, we run WRF for one year using ERA5 and FNL0832 climate reanalysis. Our results indicate that Era-interim provided better results for precipitation. In the case of temperature, FNL0832 gave better results; however, all of the models’ performances were good. Therefore, working with ERA-Interim seems the best option in this region with the physics selected. We did not experiment with changes in resolution, which may have improved results with ERA5 that has a better spatial and temporal resolution.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 304 ◽  
Author(s):  
Gonzalo Yáñez-Morroni ◽  
Jorge Gironás ◽  
Marta Caneo ◽  
Rodrigo Delgado ◽  
René Garreaud

The Weather Research and Forecasting (WRF) model has been successfully used in weather prediction, but its ability to simulate precipitation over areas with complex topography is not optimal. Consequently, WRF has problems forecasting rainfall events over Chilean mountainous terrain and foothills, where some of the main cities are located, and where intense rainfall occurs due to cutoff lows. This work analyzes an ensemble of microphysics schemes to enhance initial forecasts made by the Chilean Weather Agency in the front range of Santiago. We first tested different vertical levels resolution, land use and land surface models, as well as meteorological forcing (GFS/FNL). The final ensemble configuration considered three microphysics schemes and lead times over three rainfall events between 2015 and 2017. Cutoff low complex meteorological characteristics impede the temporal simulation of rainfall properties. With three days of lead time, WRF properly forecasts the rainiest N-hours and temperatures during the event, although more accuracy is obtained when the rainfall is caused by a meteorological frontal system. Finally, the WSM6 microphysics option had the best performance, although further analysis using other storms and locations in the area are needed to strengthen this result.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1918
Author(s):  
Jiaying Zhang ◽  
Liao-Fan Lin ◽  
Rafael L. Bras

Precipitation estimates from numerical weather prediction (NWP) models are uncertain. The uncertainties can be reduced by integrating precipitation observations into NWP models. This study assimilates Version 04 Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) (IMERG) Final Run into the Weather Research and Forecasting (WRF) model data assimilation (WRFDA) system using a four-dimensional variational (4D-Var) method. Three synoptic-scale convective precipitation events over the central United States during 2015–2017 are used as case studies. To investigate the effect of logarithmically transformed IMERG precipitation in the WRFDA system, this study reports on several experiments with six-hour and hourly assimilation windows, regular (nontransformed) and logarithmically transformed observations, and a constant observation error in regular and logarithmic spaces. Results show that hourly assimilation windows improve precipitation simulations significantly compared to six-hour windows. Logarithmically transformed precipitation does not improve precipitation estimations relative to nontransformed precipitation. However, better predictions of heavy precipitation can be achieved with a constant error in the logarithmic space (corresponding to a linearly increasing error in the regular space), which modifies the threshold of rejecting observations, and thus utilizes more observations. This study provides a cost function with logarithmically transformed observations for the 4D-Var method in the WRFDA system for future investigations.


Author(s):  
Julia Jeworrek ◽  
Gregory West ◽  
Roland Stull

AbstractPhysics parameterizations in the Weather Research and Forecasting (WRF) model are systematically varied to investigate precipitation forecast performance over the complex terrain of southwest British Columbia (BC). Comparing a full year of modelling data from over 100 WRF configurations to station observations reveals sensitivities of precipitation intensity, season, location, grid resolution, and accumulation window. The choice of cumulus and microphysics parameterizations is most important. The WSM5 microphysics scheme yields competitive verification scores when compared to more sophisticated and computationally expensive parameterizations. Although the cale-aware Grell-Freitas cumulus parameterization performs better for summertime convective precipitation, the conventional Kain-Fritsch parameterization better simulates wintertime frontal precipitation, which contributes to the majority of the annual precipitation in southwest BC. Finer grid spacings have lower relative biases and a more realistic spread in precipitation intensity distribution, yet higher relative standard deviations of their errors — they produce finer spatial differences and local extrema. Finer resolutions produce the best fraction of correct-to-incorrect forecasts across all precipitation intensities, whereas the coarser 27-km domain yields the highest hit rates and equitable threat scores. Verification metrics improve greatly with longer accumulation windows — hourly precipitation values are prone to double-penalty issues, while longer accumulation windows compensate for timing errors but lose information about short-term precipitation intensities. This study provides insights regarding WRF precipitation performance in complex terrain across a wide variety of configurations, using metrics important to a range of end users.


2021 ◽  
Author(s):  
Hajnalka Breuer ◽  
Zsuzsanna Zempléni ◽  
Ákos Varga

<p>Land use information is crucial in weather modelling as it determines the energy partitioning of the land surface. Based on the partitioning heating of near surface air and moisture supply of the planetary boundary layer is determined. These processes affect the general calculation of temperature, but it also has substantial effect on precipitation formation, especially on convective precipitation.</p><p>In this study the CORINE 44 categories are integrated into the WRF model. Usually the 44 land cover types are recategorized into a standard USGS or MODIS land use types. Here we present a dataset and application with the complete integration of the 44 types.</p><p>One-year runs are created with the CORINE land cover compared to the standard USGS dataset. Along with the new land cover types vegetation parameters had be defined as well. Four runs refer to a USGS-reference, CORINE2USGS converted, CORINE-USGS parameter, CORINE-newparameters where the effect of land cover and parameter change is analyzed. The modelled area covers the whole European region with 50 km resolution using the WRF 4.2 model. Regionally, on a monthly average 5-30% difference in precipitation and around 1 °C differences occur.</p><p>The research was supported by the Hungarian National Research, Development and Innovation Office, Grant No. FK132014. Hajnalka Breuer's work was additionally financed by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.</p>


2018 ◽  
Vol 22 (1) ◽  
pp. 853-870 ◽  
Author(s):  
María Carolina Rogelis ◽  
Micha Werner

Abstract. Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.


Sign in / Sign up

Export Citation Format

Share Document