scholarly journals A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 846
Author(s):  
Michael T. Kiefer ◽  
Joseph J. Charney ◽  
Shiyuan Zhong ◽  
Warren E. Heilman ◽  
Xindi Bian ◽  
...  

The ventilation index (VI) is an index that describes the potential for smoke or other pollutants to disperse from a source. In this study, a Lagrangian particle dispersion model was utilized to examine smoke dispersion and the diagnostic value of VI during a September 2018 prescribed fire in southwestern Colorado. Smoke dispersion in the vicinity of the fire was simulated using the FLEXPART-WRF particle dispersion model, driven by meteorological outputs from Advanced Regional Prediction System (ARPS) simulations of the background (non-fire) conditions. Two research questions are posed: (1) Is a horizontal grid spacing of 4 km comparable to the finest grid spacing currently used in operational weather models and sufficient to capture the spatiotemporal variability in wind and planetary boundary layer (PBL) structure during the fire? (2) What is the relationship between VI and smoke dispersion during the prescribed fire event, as measured by particle residence time within a given horizontal or vertical distance from each particle’s release point? The ARPS no-fire simulations are shown to generally reproduce the observed variability in weather variables, with greatest fidelity to observations found with horizontal grid spacing of approximately 1 km or less. It is noted that there are considerable differences in particle residence time (i.e., dispersion) at different elevations, with VI exhibiting greater diagnostic value in the southern half of the domain, farthest from the higher terrain across the north. VI diagnostic value is also found to vary temporally, with diagnostic value greatest during the mid-morning to mid-afternoon period, and lowest during thunderstorm outflow passage in the late afternoon. Results from this study are expected to help guide the application of VI in complex terrain, and possibly inform development of new dispersion potential metrics.

1993 ◽  
Vol 115 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Tsuneaki Ishima ◽  
Koichi Hishida ◽  
Masanobu Maeda

A particle dispersion has been experimentally investigated in a two-dimensional mixing layer with a large relative velocity between particle and gas-phase in order to clarify the effect of particle residence time on particle dispersion. Spherical glass particles 42, 72, and 135 μm in diameter were loaded directly into the origin of the shear layer. Particle number density and the velocities of both particle and gas phase were measured by a laser Doppler velocimeter with modified signal processing for two-phase flow. The results confirmed that the characteristic time scale of the coherent eddy apparently became equivalent to a shorter characteristic time scale due to a less residence time. The particle dispersion coefficients were well correlated to the extended Stokes number defined as the ratio of the particle relaxation time to the substantial eddy characteristic time scale which was evaluated by taking account of the particle residence time.


2021 ◽  
Author(s):  
Michael Weger ◽  
Bernd Heinold ◽  
Alfred Wiedensohler ◽  
Maik Merkel

Abstract. There is a gap between the need for city-wide air-quality simulations considering the intra-urban variability and mircoscale dispersion features and the computational capacities that conventional urban microscale models require. This gap can be bridged by targeting model applications on the gray zone situated between the mesoscale and large-eddy scale. The urban dispersion model CAIRDIO is a new contribution to the class of computational-fluid dynamics models operating in this scale range. It uses a diffuse-obstacle boundary method to represent buildings as physical obstacles at gray-zone resolutions in the order of tens of meters. The main objective of this approach is to find an acceptable compromise between computationally inexpensive grid sizes for spatially comprehensive applications and the required accuracy in the description of building and boundary-layer effects. For this purpose, CAIRDIO is applied in dispersion simulation of black carbon and particulate matter for an entire mid-size city using an uniform horizontal resolution of 40 m in this paper. For evaluation, the simulation results are compared with measurements from 5 operational air monitoring stations, which are representative for the urban background and high-traffic roads, respectively. Moreover, the comparison includes the mesoscale host simulation, which provides the boundary conditions. The temporal variability of the concentration measurements at the background sites was largely influenced only by the characteristics of the mixing layer. As a consequence, the model results were not significantly dependent on spatial resolution, so that the mesoscale simulation also performed reasonably well. At the traffic sites, however, concentrations were in addition markedly influenced by the proximity to road-traffic sources and the surrounding building environment. Here, the mesoscale simulation indiscriminately reproduced almost the same urban-background profiles, which resulted in a large positive model bias. On the other hand, the CAIRDIO simulation was able to respond to the significantly amplified diurnal variability with its pronounced rush-hour peaks. This resulted in a consistent improvement of the model deviation to mea- surements compared to the mesoscale simulation. Nevertheless, discrepancies to measurements remain in the 40 m-CAIRDIO simulation, e.g., an underestimation of peak concentrations at two traffic sites inside narrow street canyons. To further research resolution sensitivity, the horizontal grid spacing of locally nested CAIRDIO domains is refined down to 5 m. While for the street canyons the representation of peak concentrations can be improved using horizontal grid spacings of up to 10 m, no further improvements beyond this resolution can be observed. This suggests that the too low peak concentrations with the default grid spacing of 40 m result from an inadequate representation of the traffic emissions inside narrow street canyons. If the total gain in accuracy due to the grid refinements is put in relation to the remaining model error, the improvements are only modest. In conclusion, the proposed gray-scale modeling is a promising downscaling approach for urban air-quality applications. Nevertheless, the results also show that aspects other than the actual resolution of flow patterns and numerical effects can determine the simulations at the urban microscale.


2019 ◽  
Vol 58 (3) ◽  
pp. 551-568 ◽  
Author(s):  
Michael T. Kiefer ◽  
Joseph J. Charney ◽  
Shiyuan Zhong ◽  
Warren E. Heilman ◽  
Xindi Bian ◽  
...  

AbstractIn this study, the Flexible Particle (FLEXPART)-WRF, a Lagrangian particle dispersion model, is employed to simulate pollutant dispersion in and near the Lehigh Gap, a gap in a prominent ridgeline in eastern Pennsylvania. FLEXPART-WRF is used to evaluate the diagnostic value of the ventilation index (VI), an index that describes the potential for smoke or other pollutants to ventilate away from a source, for indicating dispersion potential in complex terrain. Little is known about the effectiveness of the ventilation index in diagnosing dispersion potential in complex terrain. The modeling approach used in this study is to release a dense cloud of particles across a portion of the model domain and evaluate particle behavior and VI diagnostic value in areas of the domain with differing terrain characteristics. Although both horizontal and vertical dispersion are examined, the study focuses primarily on horizontal dispersion, assessed quantitatively by calculating horizontal residence time (HRT) within a 1-km-radius circle surrounding the particle release point. Analysis of HRT across the domain reveals horizontal dispersion patterns that are influenced by the ridgeline and the Lehigh Gap. Comparison of VI and HRT in different areas of the domain reveals a robust relationship windward of the ridgeline and a weak relationship leeward of the ridgeline and in the vicinity of the Lehigh Gap. The results of this study suggest that VI users should consider whether they are windward or leeward of topographic features, and highlight the need for an alternative metric that better takes into account the influence of the terrain on dispersion.


2013 ◽  
Vol 781-784 ◽  
pp. 2195-2200
Author(s):  
Li Zhang ◽  
Yi Gang Ding ◽  
Jun Ji ◽  
Chang Yan Yang ◽  
Yuan Xin Wu

In order to make a further understanding of flow pattern and back mixing in the flotation process, the study about particle residence time distribution of collection zone in a packed column has been designed. The pulse tracer method was applied and the particle tracers were the mineral gangue in special size class. The residence time distribution curves of our experiment data shows that there are particle back mixings which were caused by fluid flow and geometry factors in the column. The tank-in-series model has a better fitting to the particle residence time distribution in the column according the comparison research between the tank-in-series model and axial dispersion model. The operation parameters have different effects on the particle residence time distribution according to our experimental study.


2013 ◽  
Vol 52 (12) ◽  
pp. 2623-2637 ◽  
Author(s):  
Jennifer Hegarty ◽  
Roland R. Draxler ◽  
Ariel F. Stein ◽  
Jerome Brioude ◽  
Marikate Mountain ◽  
...  

AbstractThree widely used Lagrangian particle dispersion models (LPDMs)—the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Stochastic Time-Inverted Lagrangian Transport (STILT), and Flexible Particle (FLEXPART) models—are evaluated with measurements from the controlled tracer-release experiments Cross-Appalachian Tracer Experiment (CAPTEX) and Across North America Tracer Experiment (ANATEX). The LPDMs are run forward in time driven by identical meteorological inputs from the North American Regional Reanalysis (NARR) and several configurations of the Weather Research and Forecasting (WRF) model, and the simulations of tracer concentrations are evaluated against the measurements with a ranking procedure derived from the combination of four statistical parameters. The statistical evaluation reveals that all three LPDMs have comparable skill in simulating the tracer plumes when driven by the same meteorological inputs, indicating that the differences in their formulations play a secondary role. Simulations with HYSPLIT and STILT demonstrate the benefit of using customized hourly WRF fields with 10-km horizontal grid spacing over the use of 3-hourly NARR fields with 32-km horizontal grid spacing. All three LPDMs perform better when the WRF wind fields in the planetary boundary layer are nudged to NARR, with FLEXPART benefitting the most. Case studies indicate that the nudging corrects an overestimate in plume transport speed possibly caused by a positive bias in WRF wind speeds near the surface. All three LPDMs also benefit from the use of time-averaged velocity and convective mass flux fields generated by WRF, but the impact on HYSPLIT and STILT is much greater than on FLEXPART. STILT backward runs perform as well as their forward counterparts, demonstrating this model’s reversibility and its suitability for application to inverse flux estimates.


2017 ◽  
Vol 107 (10) ◽  
pp. 1175-1186 ◽  
Author(s):  
M. Meyer ◽  
L. Burgin ◽  
M. C. Hort ◽  
D. P. Hodson ◽  
C. A. Gilligan

In recent years, severe wheat stem rust epidemics hit Ethiopia, sub-Saharan Africa’s largest wheat-producing country. These were caused by race TKTTF (Digalu race) of the pathogen Puccinia graminis f. sp. tritici, which, in Ethiopia, was first detected at the beginning of August 2012. We use the incursion of this new pathogen race as a case study to determine likely airborne origins of fungal spores on regional and continental scales by means of a Lagrangian particle dispersion model (LPDM). Two different techniques, LPDM simulations forward and backward in time, are compared. The effects of release altitudes in time-backward simulations and P. graminis f. sp. tritici urediniospore viability functions in time-forward simulations are analyzed. Results suggest Yemen as the most likely origin but, also, point to other possible sources in the Middle East and the East African Rift Valley. This is plausible in light of available field surveys and phylogenetic data on TKTTF isolates from Ethiopia and other countries. Independent of the case involving TKTTF, we assess long-term dispersal trends (>10 years) to obtain quantitative estimates of the risk of exotic P. graminis f. sp. tritici spore transport (of any race) into Ethiopia for different ‘what-if’ scenarios of disease outbreaks in potential source countries in different months of the wheat season.


2021 ◽  
Author(s):  
Iva Kůrková ◽  
Jiří Bruthans

<p>Localities containing karst features were studied in the northwestern part of Bohemian Cretaceous Basin. Namely Turnov area in facies transition between coarse-delta sandstones and marlstones (Jizera Formation, Turonian) and Miskovice area in limestones and sandy limestones - sandstones (Peruc-Korycany Formation, Cenomanian). Evolution of karst conduits is discussed elsewhere (Kůrková et al. 2019).</p><p>In both localities, disappearing streams, caves and karst springs with maximum discharge up to 100 L/s were documented. Geology and hydrogeology of this area was studied from many points of view to describe formation of karst conduits and characterize groundwater flow. Tracer tests were performed using NaCl and Na-fluoresceine between sinkholes and springs under various flow rates to evaluate residence times of water in conduits and to describe geometry of conduits. Breatkthrough curves of tracer tests were evaluated by means of Qtracer2 program (Field 2002). Groundwater flow velocity in channels starts at 0.6 km/day during low water levels up to 15 km/day during maximum water levels, the velocity increases logarithmically as a function of discharge. Similar karst conduits probably occur in other parts of Bohemian Cretaceous Basin where lot of large springs can be found.</p><p>Mean residence time of difussed flow based on tritium, CFC and SF<sub>6</sub> sampled at karst springs is 20 years for 75% of water and 100 years for remaining 25%, based on binary mixing dispersion model. This shows that most of the water drained by karst conduits is infiltrated through the soil and fractured environment with relatively high residence time. Residence times in different types of wells and springs were also measured in whole north-western part of Bohemian Cretaceous Basin. Results indicate long residence times in semi-stagnant zones represented by monitoring wells and short residence times in preferential zones represented by springs and water-supply wells.</p><p> </p><p>Research was funded by the Czech Science Foundation (GA CR No. 19-14082S), Czech Geological Survey – internal project 310250</p><p> </p><p>Field M. (2002): The QTRACER2 program for Tracer Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other hydrologic Systems. – U.S. Environmental protection agency hypertext multimedia publication in the Internet at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=54930.</p><p>Kůrková I., Bruthans J., Balák F., Slavík M., Schweigstillová J., Bruthansová J., Mikuš P., Grundloch J. (2019): Factors controlling evolution of karst conduits in sandy limestone and calcareous sandstone (Turnov area, Czech Republic). Journal of Hydrology: 574: 1062-1073</p>


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 207 ◽  
Author(s):  
Jens Wesholowski ◽  
Andreas Berghaus ◽  
Markus Thommes

Over recent years Twin-Screw-Extrusion (TSE) has been established as a platform technology for pharmaceutical manufacturing. Compared to other continuous operation, one of the major benefits of this method is the combination of several unit operations within one apparatus. Several of these are linked to the Residence Time Distribution (RTD), which is typically expressed by the residence time density function. One relevant aspect for pharmaceutical processes is the mixing capacity, which is represented by the width of this distribution. In the frame of this study the influence of the mass flow, the temperature and the screw-barrel clearance were investigated for a constant barrel load (specific feed load, SFL). While the total mass flow as well as the external screw diameter affected the mixing performance, the barrel temperature had no influence for the investigated range. The determined results were additionally evaluated with respect to a fit to the Twin-Dispersion-Model (TDM). This model is based on the superimposition of two mixing functions. The correlations between varied process parameters and the obtained characteristic model parameters proved this general physical view on extrusion.


2016 ◽  
Vol 73 (11) ◽  
pp. 4289-4309 ◽  
Author(s):  
Tomoki Ohno ◽  
Masaki Satoh ◽  
Yohei Yamada

Abstract Based on the data of a 1-yr simulation by a global nonhydrostatic model with 7-km horizontal grid spacing, the relationships among warm-core structures, eyewall slopes, and the intensities of tropical cyclones (TCs) were investigated. The results showed that stronger TCs generally have warm-core maxima at higher levels as their intensities increase. It was also found that the height of a warm-core maximum ascends (descends) as the TC intensifies (decays). To clarify how the height and amplitude of warm-core maxima are related to TC intensity, the vortex structures of TCs were investigated. By gradually introducing simplifications of the thermal wind balance, it was established that warm-core structures can be reconstructed using only the tangential wind field within the inner-core region and the ambient temperature profile. A relationship between TC intensity and eyewall slope was investigated by introducing a parameter that characterizes the shape of eyewalls and can be evaluated from satellite measurements. The authors found that the eyewall slope becomes steeper (shallower) as the TC intensity increases (decreases). Based on a balanced model, the authors proposed a relationship between TC intensity and eyewall slope. The result of the proposed model is consistent with that of the analysis using the simulation data. Furthermore, for sufficiently strong TCs, the authors found that the height of the warm-core maximum increases as the slope becomes steeper, which is consistent with previous observational studies. These results suggest that eyewall slopes can be used to diagnose the intensities and structures of TCs.


Sign in / Sign up

Export Citation Format

Share Document