scholarly journals Temporal Variation and Source Analysis of Carbonaceous Aerosol in Industrial Cities of Northeast China during the Spring Festival: The Case of Changchun

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 991
Author(s):  
Mengduo Zhang ◽  
Shichun Zhang ◽  
Qiuyang Bao ◽  
Chengjiang Yang ◽  
Yang Qin ◽  
...  

Carbonaceous aerosol, one of the major components of atmospheric aerosols, significantly affects haze episodes, climate change, and human health. Northeastern China suffers severe air pollution, especially in some periods (e.g., the Spring Festival). However, studies on carbonaceous aerosols in typical northeast industrial cities (i.e., Changchun) are rare, limiting further comprehension of the atmospheric haze formation. In this study, we monitored the concentrations of carbonaceous aerosols (i.e., OC and EC) in Changchun during the Lunar New Year of 2018 (i.e., from Lunar 20 December to Lunar 20 January), and analyzed the temporal variation and source contributions via the HYbrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model with the potential source contribution factor weights (PSCF) method. The daily concentrations of OC and EC were 9.00 ± 2.81 and 1.57 ± 0.46 µg m−3, respectively, and were significantly lower at nighttime than at the day during the Spring Festival. The concentrations during the major period (i.e., OC: 8.13 ± 2.93 µg m−3; EC: 1.47 ± 0.47 µg m−3 in festival days), including the Lunar Little New Year; the Lunar New Year’s Eve; New Year’s Day; Lunar 5 January, and the Spring Lantern Festival, were mainly from the northwestward with the wind speed of 4–6 m/s being lower than that of normal period (OC: 9.87 ± 2.46 µg m−3; EC: 1.67 ± 0.44 µg m−3) from the southeastward with a wind speed of 6–7 m/s. The direction of the airflow trajectory was mainly in local, northwestward, and northward, carrying particulate matter and gaseous pollutants. In major period, the daily concentration of atmospheric pollutants presented a bimodal trend, with peaks appearing regularly from 11:00 a.m. to 12:00 p.m. and 5:00 p.m. 10:00 p.m., which might be related to traffic, cooking, and firecrackers. The OC/EC was greater than 2 during the whole period, indicating the generation of secondary organic aerosols (i.e., SOC). This study was essential to understand the formation mechanisms of severe pollution episodes and develop control measures for the industrial cities of Northeast China during the Spring Festival.

2020 ◽  
Author(s):  
AMIT KUMAR ◽  
Sachchidanand Singh ◽  
Niraj Kumar ◽  
Narendra Singh ◽  
Krishan Kumar ◽  
...  

Abstract The present study reports carbonaceous aerosol concentrations determined in total suspended particles (TSP) from three mountainous sites viz. Devasthal Peak, Manora Peak and Bhimtal and one low-land Tarai urban site at Pantnagar in Kumaon region of Uttarakhand, western Himalaya. The concentrations of organic carbon (OC) and elemental carbon (EC) were estimated following IMPROVE_thermal optical reflectance protocol. Results showed that TSP and OC/EC concentrations varied significantly and decreased with increasing altitudes in two seasons. Seasonal/(diurnal) analysis indicated TSP and OC/EC concentrations at mountainous sites exhibited higher values in summer/(day-time), respectively while tarai site had higher values in winter/(night-time). Higher summer/(day-time) values at mountainous sites could be associated with local emissions along with vertical movement of atmospheric boundary layer resulting uplift of air pollutants due to convective motions generated in valley region. OC and EC were noted to be strongly correlated (correlation coefficient > 0.8) indicated similar emissions source and atmospheric processes. The ratios of OC/EC were observed in the range of 2.4 to 9.3, 2.1 to 8.6, 1.9 to 4.3 and 1.8 to 3.2 for Devasthal, Manora peak, Bhimtal and Pantnagar, respectively, suggested mixed sources of biomass burning, coal combustion and vehicular emissions. The large variations in OC/EC ratios at studied sites suggested presence of secondary organic carbon (SOC). Mountainous sites experienced higher % SOC contributions (41 – 45%) to total OC in winter than low-land tarai urban site could be due favourable conditions for condensation of photo-oxidation products of organic species and biogenic VOCs emissions.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 257
Author(s):  
Jin Sang Jung ◽  
Ji Hwan Kang

To investigate the impact of burning postharvest crop residues in home stoves, PM2.5 samples (particulate matter with a diameter of <2.5 μm) were collected every 3 h at a rural site in Daejeon, Korea during the postharvest season in 2014. A high concentration of levoglucosan was observed with a peak value of 3.8 µg/m3 during the sampling period. The average mannosan/levoglucosan ratio (0.18) at the rural site during a severe BB episode (levoglucosan > 1 μg/m3) was similar to burnings of pepper stems (0.19) and bean stems (0.18) whereas the average OC/levoglucosan ratio (9.9) was similar to burning of pepper stems (10.0), implying that the severe BB episode was mainly attributed to burning of pepper stems. A very strong correlation was observed between levoglucosan and organic carbon (OC) (R2 = 0.81) during the entire sampling period, suggesting that the emission of organic aerosols at the rural site was strongly associated with the burning of crop residues in home stoves. The average mannosan/levoglucosan ratio (0.17 ± 0.06) in the rural area was similar to that in a nearby urban area in Daejeon (0.16 ± 0.04). It was concluded that crop residue burning in a home stove for space heating is one of the important sources of carbonaceous aerosols not only in a rural area but also in the urban area of Daejeon, Korea during the postharvest season.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2020 ◽  
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Ulrike Dusek

&lt;p&gt;To investigate the sources and formation mechanisms of carbonaceous aerosols, a major contributor to severe particulate air pollution, radiocarbon&amp;#160;(&lt;span&gt;&lt;sup&gt;14&lt;/sup&gt;C&lt;/span&gt;) measurements were conducted on aerosols sampled from November&amp;#160;2015 to November&amp;#160;2016 in Xi'an, China. Based on the&amp;#160;&lt;span&gt;&lt;sup&gt;14&lt;/sup&gt;C&lt;/span&gt;&amp;#160;content in elemental carbon&amp;#160;(EC), organic carbon&amp;#160;(OC) and water-insoluble OC&amp;#160;(WIOC), contributions of major sources to carbonaceous aerosols are estimated over a whole seasonal cycle: primary and secondary fossil sources, primary biomass burning, and other non-fossil carbon formed mainly from secondary processes. Primary fossil sources of&amp;#160;EC were further sub-divided into coal and liquid fossil fuel combustion by complementing&amp;#160;&lt;span&gt;&lt;sup&gt;14&lt;/sup&gt;C&lt;/span&gt;&amp;#160;data with stable carbon isotopic signatures.&lt;/p&gt;&lt;p&gt;The dominant EC&amp;#160;source was liquid fossil fuel combustion (i.e., vehicle emissions), accounting for 64&amp;#8201;% (median; 45&amp;#8201;%&amp;#8211;74&amp;#8201;%, interquartile range) of&amp;#160;EC in autumn, 60&amp;#8201;% (41&amp;#8201;%&amp;#8211;72&amp;#8201;%) in summer, 53&amp;#8201;% (33&amp;#8201;%&amp;#8211;69&amp;#8201;%) in spring and 46&amp;#8201;% (29&amp;#8201;%&amp;#8211;59&amp;#8201;%) in winter. An increased contribution from biomass burning to&amp;#160;EC was observed in winter (&lt;span&gt;&amp;#8764;28&lt;/span&gt;&amp;#8201;%) compared to other seasons (warm period;&amp;#160;&lt;span&gt;&amp;#8764;15&lt;/span&gt;&amp;#8201;%). In winter, coal combustion (&lt;span&gt;&amp;#8764;25&lt;/span&gt;&amp;#8201;%) and biomass burning equally contributed to&amp;#160;EC, whereas in the warm period, coal combustion accounted for a larger fraction of&amp;#160;EC than biomass burning. The relative contribution of fossil sources to&amp;#160;OC was consistently lower than that to&amp;#160;EC, with an annual average of&amp;#160;&lt;span&gt;47&amp;#177;4&lt;/span&gt;&amp;#8201;%. Non-fossil OC&amp;#160;of secondary origin was an important contributor to total&amp;#160;OC (&lt;span&gt;35&amp;#177;4&lt;/span&gt;&amp;#8201;%) and accounted for more than half of non-fossil&amp;#160;OC (&lt;span&gt;67&amp;#177;6&lt;/span&gt;&amp;#8201;%) throughout the year. Secondary fossil&amp;#160;OC&amp;#160;(SOC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;) concentrations were higher than primary fossil&amp;#160;OC&amp;#160;(POC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;) concentrations in winter but lower than POC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;in the warm period.&lt;/p&gt;&lt;p&gt;Fossil WIOC and water-soluble&amp;#160;OC&amp;#160;(WSOC) have been widely used as proxies for POC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;and SOC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;, respectively. This assumption was evaluated by (1)&amp;#160;comparing their mass concentrations with POC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;and SOC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;and (2)&amp;#160;comparing ratios of fossil WIOC to fossil&amp;#160;EC to typical primary&amp;#160;OC-to-EC ratios from fossil sources including both coal combustion and vehicle emissions. The results suggest that fossil WIOC and fossil WSOC are probably a better approximation for primary and secondary fossil&amp;#160;OC, respectively, than POC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;and SOC&lt;span&gt;&lt;sub&gt;fossil&lt;/sub&gt;&lt;/span&gt;&amp;#160;estimated using the EC&amp;#160;tracer method.&lt;/p&gt;


2019 ◽  
Vol 19 (24) ◽  
pp. 15609-15628 ◽  
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Junji Cao ◽  
Jie Guo ◽  
Haoyue Deng ◽  
...  

Abstract. To investigate the sources and formation mechanisms of carbonaceous aerosols, a major contributor to severe particulate air pollution, radiocarbon (14C) measurements were conducted on aerosols sampled from November 2015 to November 2016 in Xi'an, China. Based on the 14C content in elemental carbon (EC), organic carbon (OC) and water-insoluble OC (WIOC), contributions of major sources to carbonaceous aerosols are estimated over a whole seasonal cycle: primary and secondary fossil sources, primary biomass burning, and other non-fossil carbon formed mainly from secondary processes. Primary fossil sources of EC were further sub-divided into coal and liquid fossil fuel combustion by complementing 14C data with stable carbon isotopic signatures. The dominant EC source was liquid fossil fuel combustion (i.e., vehicle emissions), accounting for 64 % (median; 45 %–74 %, interquartile range) of EC in autumn, 60 % (41 %–72 %) in summer, 53 % (33 %–69 %) in spring and 46 % (29 %–59 %) in winter. An increased contribution from biomass burning to EC was observed in winter (∼28 %) compared to other seasons (warm period; ∼15 %). In winter, coal combustion (∼25 %) and biomass burning equally contributed to EC, whereas in the warm period, coal combustion accounted for a larger fraction of EC than biomass burning. The relative contribution of fossil sources to OC was consistently lower than that to EC, with an annual average of 47±4 %. Non-fossil OC of secondary origin was an important contributor to total OC (35±4 %) and accounted for more than half of non-fossil OC (67±6 %) throughout the year. Secondary fossil OC (SOCfossil) concentrations were higher than primary fossil OC (POCfossil) concentrations in winter but lower than POCfossil in the warm period. Fossil WIOC and water-soluble OC (WSOC) have been widely used as proxies for POCfossil and SOCfossil, respectively. This assumption was evaluated by (1) comparing their mass concentrations with POCfossil and SOCfossil and (2) comparing ratios of fossil WIOC to fossil EC to typical primary OC-to-EC ratios from fossil sources including both coal combustion and vehicle emissions. The results suggest that fossil WIOC and fossil WSOC are probably a better approximation for primary and secondary fossil OC, respectively, than POCfossil and SOCfossil estimated using the EC tracer method.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 592 ◽  
Author(s):  
Mariantonia Bencardino ◽  
Virginia Andreoli ◽  
Francesco D’Amore ◽  
Francesco De Simone ◽  
Valentino Mannarino ◽  
...  

This work provides the first continuous measurements of carbonaceous aerosol at the Global Atmosphere Watch (GAW) Monte Curcio regional station, within the southern Mediterranean basin. We specifically analyzed elemental carbon (EC) and organic carbon (OC) concentrations in particulate matter (PM) samples, collected from April to December during the two years of 2016 and 2017. The purpose of the study is to understand the behavior of both PM and carbonaceous species, in their fine and coarse size fraction, along with their seasonal variability. Based on 18 months of observations, we obtained a dataset that resulted in a vast range of variability. We found the maximum values in summer, mainly related to the enhanced formation of secondary pollutants owing to intense solar radiation, also due to the high frequency of wildfires in the surrounding areas, as well as to the reduced precipitation and aerosol-wet removal. We otherwise observed the lowest levels during fall, coinciding with well-ventilated conditions, low photochemical activity, higher precipitation amounts, and less frequency of Saharan dust episodes. We employed the HYSPLIT model to identify long-range transport from Saharan desert. We found that the Saharan dust events caused higher concentrations of PM and OC in the coarser size fraction whereas the wildfire events likely influenced the highest PM, OC, and EC concentrations we recorded for the finer fraction.


2018 ◽  
Vol 18 (9) ◽  
pp. 6441-6460 ◽  
Author(s):  
Hewen Niu ◽  
Shichang Kang ◽  
Hailong Wang ◽  
Rudong Zhang ◽  
Xixi Lu ◽  
...  

Abstract. Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 ma.s.l.) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.


2010 ◽  
Vol 104 (3-4) ◽  
pp. 313-324 ◽  
Author(s):  
Guobin Fu ◽  
Jingjie Yu ◽  
Yichi Zhang ◽  
Shanshan Hu ◽  
Rulin Ouyang ◽  
...  

2017 ◽  
Vol 17 (18) ◽  
pp. 11637-11654 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaž Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.


Sign in / Sign up

Export Citation Format

Share Document