scholarly journals Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

2018 ◽  
Vol 18 (9) ◽  
pp. 6441-6460 ◽  
Author(s):  
Hewen Niu ◽  
Shichang Kang ◽  
Hailong Wang ◽  
Rudong Zhang ◽  
Xixi Lu ◽  
...  

Abstract. Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 ma.s.l.) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

2017 ◽  
Author(s):  
Hewen Niu ◽  
Shichang Kang ◽  
Hailong Wang ◽  
Rudong Zhang ◽  
Xixi Lu ◽  
...  

Abstract. The high altitude glacierized regions of the Tibetan Plateau (TP) are influenced by carbonaceous aerosols from local sources and long range transport from the adjoining areas. Deposition and accumulation of light-absorbing carbonaceous matters on glacier surfaces can alter the energy balance of glaciers. In this study, two years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols performed in glacierized region of Mt. Yulong (4510 m a.s.l.) and Ganhaizi (GHZ) basin (3054 m a.s.l.) are analyzed. The mass absorption efficiency (MAE) of black carbon (BC) was determined for the first time in Mt. Yulong using a thermal-optical carbon analyzer. The average BC and organic carbon (OC) concentrations were 1.51 ± 0.93 and 2.57 ± 1.32 μg m−3, respectively. The average SOC (secondary OC) concentration, quantified using BC-tracer method, was 1.67 ± 1.15 μg m−3. Monthly mean BC concentrations from monsoon to post-monsoon season were higher than OC in the high altitudes (approximately 5000 m a.s.l.) of Mt. Yulong. The concentrations of carbonaceous matter have distinct spatial and inter-annual variations in this glacierization area. High carbonaceous matter associated with OC (including both SOC and POC) in GHZ basin was mainly contributed from tour bus emissions. The annual mean OC / BC ratio was 2.45 ± 1.96 in Mt. Yulong. Strong photochemical reactions and local tourism activities in monsoon season were the main factors inducing high OC / BC ratios in the Mt. Yulong region. The mean MAE of BC, measured at 632 nm with a thermal-optical protocol under the filter-based method, was 6.82 ± 0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of BC MAE were largely related to the OC and SOC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a BC source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC at the two sites. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.


MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 245-254
Author(s):  
KUMAR SUNIL ◽  
SRIVASTAVA A K ◽  
PATHAK V

Measurements of near-surface air pollutants at an urban station, Lucknow have been studied at two contrasting sites as residential and industrial during three-year period from 2015 to 2017 to understand their variability on different temporal scales. The annual mean mass concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), nitric oxide (NO) and particulate matter of size less than 2.5 µm (PM2.5) at an industrial site were about 10 ± 5, 28 ± 17, 10 ± 11 and 128 ± 99 µg m-3 and at the residential site were about 8 ± 5, 30 ± 21, 9 ± 7 and 102 ± 81 µg m-3 respectively. It was observed that the annual mean mass concentration of PM2.5 was about 3 times higher than its annual National Ambient Air Quality Standards (NAAQS) level. However, SO2 and NO2 were about 5 and 1.5 times lower to their annual NAAQS levels, respectively. The seasonal mean mass concentrations of all the pollutants were found to be highest during the winter/post-monsoon season at both the sites, which are more pronounced at industrial site compared to residential site. The observed high pollutants over the station during the winter/post-monsoon season were found to be largely associated with the air mass back-trajectories from N-NW direction.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2117
Author(s):  
Su-mi Kim ◽  
Hyun-su Kim

The variations in water quality parameters and trophic status of a multipurpose reservoir in response to changing intensity of monsoon rain was investigated by applying a trophic state index deviation (TSID) analysis and an empirical regression model to the data collected in two periods from 2014 to 2017. The reservoir in general maintained mesotrophic conditions, and Carlson’s trophic state index (TSIc) was affected most by TSITP. Nutrient concentrations, particularly phosphorus, did not show strong correlations with precipitation, particularly in the period with weak monsoon, and a significant increase in total phosphorus (TP) was observed in Spring 2015, indicating the possibility of internal phosphorus loading under decreased depth and stability of water body due to a lack of precipitation. TSIChl was higher than TSISD in most data in period 1 when a negligible increase in precipitation was observed in the monsoon season while a significant fraction in period 2 showed the opposite trend. Phytoplankton growth was not limited by nutrient limitation although nutrient ratios (N/P) of most samples were significantly higher than 20, indicating phosphorus-limited condition. TSID and regression analysis indicated that phytoplankton growth was limited by zooplankton grazing in the Spring, and that cell concentrations and community structure in the monsoon and post-monsoon season were controlled by the changing intensity of the monsoon, as evidenced by the positive and negative relationships between community size and cyanobacterial population with the amount of precipitation in the Summer, respectively. The possibility of contribution from internal loading and an increase in cyanobacterial population associated with weak monsoon, in addition to potential for nutrient enrichment in the post-monsoon season, implies a need for the application of more stringent water quality management in the reservoir that can handle all potential scenarios of eutrophication.


Healthline ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 100-107
Author(s):  
Arti Agrawal ◽  
Vikas Kumar ◽  
Sanjeev Kumar ◽  
Neha K Mani

Introduction: Dengue virus infection is a major public health issue prevalent in tropical and sub-tropical countries all over the world mostly in urban and semi-urban areas. WHO estimates about 50-100 million dengue infections worldwide every year. The present study is aimed to assess the prevalence and seasonal distribution of dengue disease during three consecutive years from 2016-2018 at a tertiary care centre of North India. Method: This is an observational retrospective study conducted on total 6,481 clinical suspected cases referred from indoor and outdoor departments of Medicine and Pediatrics of one of the medical colleges of Agra during the period from 1st January 2016 to 31st December 2018. Results: The maximum positivity was recorded in the year 2016 (16.66%), followed by 2017 (14.07%) and 2018(13.56%).Our study shows male preponderance with maximum cases in the year 2018 was recorded in the month of October (22.75%) whereas the lowest in the month of May (1.96%). Most of the cases were in the age group 0-30 years with a male preponderance. The outbreak occurred during the months of August to November indicating vector transmission in the monsoon and post-monsoon season. Conclusion: From the analysis, this study reflects that the numbers of dengue cases in 2016 were maximum and outnumbered the dengue cases among three consecutive years from 2016 to 2018. The peak in dengue positivity was observed during September to October. As this disease affects the population in the monsoon and post monsoon months therefore continuous monitoring of dengue infection is important during the post-monsoon season.


2020 ◽  
Vol 15 (3) ◽  
pp. 526-534
Author(s):  
Abhisek Pal ◽  
Soumendu Chatterjee

Tropical cyclone (TC) genesis over the North Indian Ocean (NIO) region showed significant amount of both spatial and temporal variability.It was observed that the TC genesis was significantly suppressed during the monsoon (June-September) compared to pre-monsoon (March-May) and post-monsoon (October-December) season specifically in terms of severe cyclonic storms (SCS) frequency. The Bay of Bengal (BoB) was characterized by higher TC frequency but lower intensity compared to the Arabian Sea (AS). It was also observed that the TC genesis locations were shifted significantly seasonally.The movement of the TCs also portrayed some significant seasonal differences. The pre-monsoon and post-monsoon season was responsible for generating TCs with higher values of accumulated cyclone energy (ACE) compared to the monsoon. The time series of TC frequency showed a statistically significant decreasing trend whereas the time series of ACE showed astatistically significant increasing trend over the NIO.


2021 ◽  
Vol 13 (3) ◽  
pp. 17963-17971
Author(s):  
A. Vivek Chandran ◽  
Subin K. Jose ◽  
Sujith V. Gopalan

A year-long study was conducted at the Kole Wetlands, a Ramsar site in central Kerala to document the diversity of dragonflies and damselflies and understand their seasonality.  Checklist survey method was used to sample adult odonates in 30 randomly chosen locations.  A total of 44 species (30 dragonflies and 14 damselflies) belonging to 33 genera and eight families were recorded in the study area.  Species richness showed a peak in the post-monsoon season and a dip in the summer.  The observations support the value of the Kole Wetlands in providing valuable resources for Odonata.


1979 ◽  
Vol 15 (2) ◽  
pp. 161-168 ◽  
Author(s):  
P. J. Gregory ◽  
G. R. Squire

SUMMARYIrrigated and unirrigated crops of pearl millet were grown in Hyderabad, India, during the post-monsoon season of 1977. Irrigation increased both the dry weight of roots and the number of root axes, but because the additional axes were thick and unbranched the total length of roots was unaffected. However, irrigation did cause more of the root length to be in the top 20 cm of soil. Yield of the irrigated crop was higher than that of the dry crop, mainly because more tillers survived to produce grain. Grain growth of the dry crop occurred when the net growth of the crop was zero, probably because of movement of assimilate from stems to panicles. Possible strategies for improving yields are examined in the light of the growth data.


2008 ◽  
Vol 8 (2) ◽  
pp. 4625-4667 ◽  
Author(s):  
D. F. Zhang ◽  
A. S. Zakey ◽  
X. J. Gao ◽  
F. Giorgi

Abstract. The ICTP regional climate model (RegCM3) coupled with a desert dust model is used to simulate the radiative forcing and related climate effects of dust aerosols over East Asia. Two sets of experiments encompassing the main dust producing months, February to May, for 10 years (1997–2006) are conducted and inter-compared, one without (Exp. 1) and one with (Exp. 2) the radiative effects of dust aerosols. The simulation results are evaluated against ground station and satellite data. The model captures the basic observed climatology over the area of interest. The spatial and temporal variations of near surface concentration, mass load, and emission of dust aerosols from the main source regions are reproduced by model, with the main model deficiency being an overestimate of dust amount over the source regions and underestimate downwind of these source areas. Both the top-of-the-atmosphere (TOA) and surface radiative fluxes are decreased by dust and this causes a surface cooling locally up to −1°C. The inclusion of dust radiative forcing leads to a reduction of dust emission in the East Asia source regions, which is mainly caused by an increase in local stability and a corresponding decrease in dust lifting. Our results indicate that dust effects should be included in the assessment of climate change over East Asia.


Sign in / Sign up

Export Citation Format

Share Document