scholarly journals Numerical Analysis of Smoke Spreading in a Medium-High Building under Different Ventilation Conditions

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 705
Author(s):  
Zdzislaw Salamonowicz ◽  
Malgorzata Majder-Lopatka ◽  
Anna Dmochowska ◽  
Aleksandra Piechota-Polanczyk ◽  
Andrzej Polanczyk

Smoke from fires in residential buildings represents the greatest threat to the life and health of inhabitants and firefighters at the scene of an accident. Therefore, the aim of this study was to reconstruct a numerical model for the estimation of smoke spread in a medium-high building under different ventilation conditions. Here, the three-dimensional geometry of a designated medium-high building was reconstructed and an exit door in the basement was specified as a smoke inlet; a window in the upper part was marked as outlet; and an entrance door, which allowed the outside air to enter the building after opening, was designated as an inlet door. The initial simulation, in which no air could enter the building, predicted the time taken for the staircase to become filled with smoke. In a second simulation, the entrance door was a fresh air inlet. The results showed that, for the analyzed building, rapid use of the mechanical ventilation can shorten the time of operations and improve their safety.

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Byung Chang Kwag ◽  
Moncef Krarti

The application of thermo-active foundation (TAF) systems to heat and cool residential buildings is evaluated in this paper. First, a transient three-dimensional finite difference numerical model is developed for the analysis of thermo-active foundations. The numerical model predictions are then validated against experimental data obtained from laboratory testing. Using the validated numerical model, G-functions for TAFs are generated and integrated into whole-building simulation analysis program, energyplus. A comparative analysis is carried out to evaluate TAF systems compared to conventional ground-source heat pumps (GSHPs) to provide heating and cooling for multifamily residential buildings. In particular, the analysis compares the cost-effectiveness of TAFs and GSHPs to meet heating and cooling needs for a prototypical multifamily building in three U.S. climates. Due to lower initial costs associated to the reduced excavation costs, it is found that TAFs offer a more cost-effectiveness than GSHP systems to heat and cool multifamily residential buildings.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6303
Author(s):  
Weipeng Deng ◽  
Fengzhong Sun

To enhance the cooling capacity of a single air inlet induced draft cooling tower (SIDCT), the stepped fill layout pattern is proposed in this paper. A three-dimensional numerical model is established and validated by field measurement data. The cooling capacity of towers equipped with uniform fill and stepped fill is compared under various crosswind velocities (0 m/s–12 m/s) and crosswind angles (0°–180°). The results showed that the ventilation rate of the total tower with stepped fill is increased. Under the studied crosswind velocity and angle, the cooling capacity of the stepped fill tower is superior to the uniform fill tower. After using stepped fill, the mean drop of outlet water temperature rises by 0.29 °C, 0.27 °C, 0.17 °C, 0.10 °C, and 0.19 °C, corresponding to crosswind angles from 0° to 180°. The increment of cooling capacity is the maximum under the crosswind angles of 0° and 45° and is the minimum under the crosswind angles of 90° and 135°. The maximum increased value of N is 0.65 under the crosswind velocity of 4 m/s, 0.85 under 8 m/s, and 0.95 under 12 m/s.


Author(s):  
Yasuo NIIDA ◽  
Norikazu NAKASHIKI ◽  
Takaki TSUBONO ◽  
Shin’ichi SAKAI ◽  
Teruhisa OKADA

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2021 ◽  
Vol 13 (13) ◽  
pp. 7327
Author(s):  
Rajesh Singh ◽  
Anita Gehlot ◽  
Shaik Vaseem Akram ◽  
Lovi Raj Gupta ◽  
Manoj Kumar Jena ◽  
...  

The United Nations (UN) 2030 agenda on sustainable development goals (SDGs) encourages us to implement sustainable infrastructure and services for confronting challenges such as large energy consumption, solid waste generation, depletion of water resources and emission of greenhouse gases in the construction industry. Therefore, to overcome challenges and establishing sustainable construction, there is a requirement to integrate information technology with innovative manufacturing processes and materials science. Moreover, the wide implementation of three-dimensional printing (3DP) technology in constructing monuments, artistic objects, and residential buildings has gained attention. The integration of the Internet of Things (IoT), cloud manufacturing (CM), and 3DP allows us to digitalize the construction for providing reliable and digitalized features to the users. In this review article, we discuss the opportunities and challenges of implementing the IoT, CM, and 3D printing (3DP) technologies in building constructions for achieving sustainability. The recent convergence research of cloud development and 3D printing (3DP) are being explored in the article by categorizing them into multiple sections including 3D printing resource access technology, 3D printing cloud platform (3D–PCP) service architectures, 3D printing service optimized configuration technology, 3D printing service evaluation technology, and 3D service control and monitoring technology. This paper also examines and analyzes the limitations of existing research and, moreover, the article provides key recommendations such as automation with robotics, predictive analytics in 3DP, eco-friendly 3DP, and 5G technology-based IoT-based CM for future enhancements.


2020 ◽  
Vol 64 (12) ◽  
pp. 2011-2017
Author(s):  
K. Hashimoto ◽  
Y. Hirata ◽  
K. Kadota ◽  
Y. Ogino

2020 ◽  
pp. 1420326X2096076
Author(s):  
Pedro F. Pereira ◽  
Nuno M. M. Ramos

In Portugal, residential buildings commonly have their ventilation strategy changed after commissioning. This occurs due to the building managers' willingness to reduce shared costs with the electricity needed for fan operation. However, this option is not technically supported, and the effects of such a strategy on indoor air quality-related to human pollutants are yet to be quantified. CO2 was monitored in 15 bedrooms and air exchange rates were calculated for each room. The air exchange rate values ranged from 0.18 to 0.53 h−1 when mechanical extraction ventilation was off, and from 0.45 to 0.90 h−1 when mechanical extraction ventilation was on, which represents an average increase of 119%. With the current intermittent ventilation strategy, all rooms remain above 1500 ppm for a given percentage of time, and 12 rooms presenting CO2 concentrations above 2000 ppm. Simulations of theoretical CO2 concentrations, for a non-interrupted mechanical ventilation strategy show that no rooms would accumulate CO2 concentrations above 2000 ppm, and only 25% would present CO2 concentrations above 1500 ppm. Pearson correlations between the monitored CO2 and human and spatial factors identified two relevant parameters. Those parameters correspond to ratios between CO2 generation and floor area ([Formula: see text]), and airflow with CO2 generation ([Formula: see text]). The proposed ratios could be used as ways to optimise ventilation costs and indoor air quality.


Sign in / Sign up

Export Citation Format

Share Document