scholarly journals Calibration of X-Band Radar for Extreme Events in a Spatially Complex Precipitation Region in North Peru: Machine Learning vs. Empirical Approach

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1561
Author(s):  
Rütger Rollenbeck ◽  
Johanna Orellana-Alvear ◽  
Rodolfo Rodriguez ◽  
Simon Macalupu ◽  
Pool Nolasco

Cost-efficient single-polarized X-band radars are a feasible alternative due to their high sensitivity and resolution, which makes them well suited for complex precipitation patterns. The first horizontal scanning weather radar in Peru was installed in Piura in 2019, after the devastating impact of the 2017 coastal El Niño. To obtain a calibrated rain rate from radar reflectivity, we employ a modified empirical approach and draw a direct comparison to a well-established machine learning technique used for radar QPE. For both methods, preprocessing steps are required, such as clutter and noise elimination, atmospheric, geometric, and precipitation-induced attenuation correction, and hardware variations. For the new empirical approach, the corrected reflectivity is related to rain gauge observations, and a spatially and temporally variable parameter set is iteratively determined. The machine learning approach uses a set of features mainly derived from the radar data. The random forest (RF) algorithm employed here learns from the features and builds decision trees to obtain quantitative precipitation estimates for each bin of detected reflectivity. Both methods capture the spatial variability of rainfall quite well. Validating the empirical approach, it performed better with an overall linear regression slope of 0.65 and r of 0.82. The RF approach had limitations with the quantitative representation (slope = 0.44 and r = 0.65), but it more closely matches the reflectivity distribution, and it is independent of real-time rain-gauge data. Possibly, a weighted mean of both approaches can be used operationally on a daily basis.

2013 ◽  
Vol 52 (8) ◽  
pp. 1817-1835 ◽  
Author(s):  
Jordi Figueras i Ventura ◽  
Pierre Tabary

AbstractIn 2012 the Météo France metropolitan operational radar network consists of 24 radars operating at C and S bands. In addition, a network of four X-band gap-filler radars is being deployed in the French Alps. The network combines polarimetric and nonpolarimetric radars. Consequently, the operational radar rainfall algorithm has been adapted to process both polarimetric and nonpolarimetric data. The polarimetric processing chain is available in two versions. In the first version, now operational, polarimetry is only used to correct for attenuation and filter out clear-air echoes. In the second version there is a more extensive use of polarimetry. In particular, the specific differential phase Kdp is used to estimate rainfall rate in intense rain. The performance of the three versions of radar rainfall algorithms (conventional, polarimetric V1, and polarimetric V2) at different frequency bands (S, C, and X) is evaluated by processing radar data of significant events offline and comparing hourly radar rainfall accumulations with hourly rain gauge data. The results clearly show a superior performance of the polarimetric products with respect to the nonpolarimetric ones at all frequency bands, but particularly at higher frequency. The second version of the polarimetric product, which makes a broader use of polarimetry, provides the best overall results.


Author(s):  
Igor Paz ◽  
Bernard Willinger ◽  
Auguste Gires ◽  
Laurent Monier ◽  
Christophe Zobrist ◽  
...  

This paper presents a comparison between rain gauges, C-band and X-band radar data over an instrumented and regulated catchment of the Paris region, as well as their respective hydrological impacts with the help of flow observations and a semi-distributed hydrological model. Both radars confirm the high spatial variability of the rainfall down to their space resolution (respectively one kilometer and 250 m) and therefore underscore limitations of semi-distributed simulations. The use of the polarimetric capacity of the Météo-France C-band radar was limited to corrections of the horizontal reflectivity and its rainfall estimates are adjusted with the help of a rain gauge network. On the contrary, neither calibration was performed for the polarimetric X-band radar of the Ecole des Ponts ParisTech (below called ENPC X-band radar), nor any optimization of its scans. In spite of that and the non-negligible fact that the catchment was much closer to the C-band radar than to the X-band radar (20 km vs. 40 km), the latter seems to perform at least as well as the former, but with a higher scale resolution. This characteristic was best highlighted with the help of a multifractal analysis of the respective radar data, which also shows that the X-band radar was able to pick up a few extremes that were smoothed out by the C-band radar.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 496 ◽  
Author(s):  
Ibrahim Seck ◽  
Joël Van Baelen

Optimal Quantitative Precipitation Estimation (QPE) of rainfall is crucial to the accuracy of hydrological models, especially over urban catchments. Small-to-medium size towns are often equipped with sparse rain gauge networks that struggle to capture the variability in rainfall over high spatiotemporal resolutions. X-band Local Area Weather Radars (LAWRs) provide a cost-effective solution to meet this challenge. The Clermont Auvergne metropolis monitors precipitation through a network of 13 rain gauges with a temporal resolution of 5 min. 5 additional rain gauges with a 6-minute temporal resolution are available in the region, and are operated by the national weather service Météo-France. The LaMP (Laboratoire de Météorologie Physique) laboratory’s X-band single-polarized weather radar monitors precipitation as well in the region. In this study, three geostatistical interpolation techniques—Ordinary kriging (OK), which was applied to rain gauge data with a variogram inferred from radar data, conditional merging (CM), and kriging with an external drift (KED)—are evaluated and compared through cross-validation. The performance of the inverse distance weighting interpolation technique (IDW), which was applied to rain gauge data only, was investigated as well, in order to evaluate the effect of incorporating radar data on the QPE’s quality. The dataset is comprised of rainfall events that occurred during the seasons of summer 2013 and winter 2015, and is exploited at three temporal resolutions: 5, 30, and 60 min. The investigation of the interpolation techniques performances is carried out for both seasons and for the three temporal resolutions using raw radar data, radar data corrected from attenuation, and the mean field bias, successively. The superiority of the geostatistical techniques compared to the inverse distance weighting method was verified with an average relative improvement of 54% and 31% in terms of bias reduction for kriging with an external drift and conditional merging, respectively (cross-validation). KED and OK performed similarly well, while CM lagged behind in terms of point measurement QPE accuracy, but was the best method in terms of preserving the observations’ variance. The correction schemes had mixed effects on the multivariate geostatistical methods. Indeed, while the attenuation correction improved KED across the board, the mean field bias correction effects were marginal. Both radar data correction schemes resulted in a decrease of the ability of CM to preserve the observations variance, while slightly improving its point measurement QPE accuracy.


2005 ◽  
Vol 22 (11) ◽  
pp. 1633-1655 ◽  
Author(s):  
S-G. Park ◽  
M. Maki ◽  
K. Iwanami ◽  
V. N. Bringi ◽  
V. Chandrasekar

Abstract In this paper, the attenuation-correction methodology presented in Part I is applied to radar measurements observed by the multiparameter radar at the X-band wavelength (MP-X) of the National Research Institute for Earth Science and Disaster Prevention (NIED), and is evaluated by comparison with scattering simulations using ground-based disdrometer data. Further, effects of attenuation on the estimation of rainfall amounts and drop size distribution parameters are also investigated. The joint variability of the corrected reflectivity and differential reflectivity show good agreement with scattering simulations. In addition, specific attenuation and differential attenuation, which are derived in the correction procedure, show good agreement with scattering simulations. In addition, a composite rainfall-rate algorithm is proposed and evaluated by comparison with eight gauges. The radar-rainfall estimates from the uncorrected (or observed) ZH produce severe underestimation, even at short ranges from the radar and for stratiform rain events. On the contrary, the reflectivity-based rainfall estimates from the attenuation-corrected ZH does not show such severe underestimation and does show better agreement with rain gauge measurements. More accurate rainfall amounts can be obtained from a simple composite algorithm based on specific differential phase KDP, with the R(ZH_cor) estimates being used for low rainfall rates (KDP ≤ 0.3° km−1 or ZH_cor ≤ 35 dBZ). This improvement in accuracy of rainfall estimation based on KDP is a result of the insensitivity of the rainfall algorithm to natural variations of drop size distributions (DSDs). The ZH, ZDR, and KDP data are also used to infer the parameters (median volume diameter D0 and normalized intercept parameter Nw) of a normalized gamma DSD. The retrieval of D0 and Nw from the corrected radar data show good agreement with those from disdrometer data in terms of the respective relative frequency histograms. The results of this study demonstrate that high-quality hydrometeorological information on rain events such as rainfall amounts and DSDs can be derived from X-band polarimetric radars.


2017 ◽  
Vol 18 (12) ◽  
pp. 3199-3215 ◽  
Author(s):  
Leonardo Porcacchia ◽  
P. E. Kirstetter ◽  
J. J. Gourley ◽  
V. Maggioni ◽  
B. L. Cheong ◽  
...  

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally difficult to obtain reliable precipitation information over complex areas because of the scarce coverage of ground observations, the limited coverage from operational radar networks, and the high elevation of the study sites. Warm-rain processes have been observed in several flash flood events in complex terrain regions. While they lead to high rainfall rates from precipitation growth due to collision–coalescence of droplets in the cloud liquid layer, their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental information at high-resolution and at low atmospheric levels. This study analyzes a dataset collected in North Carolina during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign over a mountainous basin where the NOAA/National Severe Storm Laboratory’s X-band polarimetric radar (NOXP) was deployed. Polarimetric variables are used to isolate collision–coalescence microphysical processes. This work lays the basis for classification algorithms able to identify coalescence-dominant precipitation by merging the information coming from polarimetric radar measurements. The sensitivity of the proposed classification scheme is tested with different rainfall-rate retrieval algorithms and compared to rain gauge observations. Results show the inadequacy of rainfall estimates when coalescence identification is not taken into account. This work highlights the necessity of a correct classification of collision–coalescence processes, which can lead to improvements in quantitative precipitation estimation. Future studies will aim at generalizing this scheme by making use of spaceborne radar data.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Santosa Sandy Putra ◽  
Banata Wachid Ridwan ◽  
Kazuki Yamanoi ◽  
Makoto Shimomura ◽  
Sulistiyani ◽  
...  

An X-band radar was installed in 2014 at Merapi Museum, Yogyakarta, Indonesia, to monitor pyroclastic and rainfall events around Mt. Merapi. This research aims to perform a reliability analysis of the point extracted rainfall data from the aforementioned newly installed radar to improve the performance of the warning system in the future. The radar data was compared with the monitored rain gauge data from Balai Sabo and the IMERG satellite data from NASA and JAXA (The Integrated Multi-satellitE Retrievals for GPM), which had not been done before. All of the rainfall data was compared on an hourly interval. The comparisons were conducted based on 11 locations that correspond to the ground rainfall measurement stations. The locations of the rain gauges are spread around Mt. Merapi area. The point rainfall information was extracted from the radar data grid and the satellite data grid, which were compared with the rain gauge data. The data were then calibrated and adjusted up to the optimum state. Based on January 2017–March 2018 data, it was obtained that the optimum state has a NSF value of 0.41 and R2value of 0.56. As a result, it was determined that the radar can capture around 79% of the hourly rainfall occurrence around Mt. Merapi area during the chosen calibration period, in comparison with the rain gauge data. The radar was also able to capture nearby 40–50% of the heavy rainfall events that pose risks of lahar. In contrast, the radar data performance in detecting drizzling and light rain types were quite precise (55% of cases), although the satellite data could detect slightly better (60% of cases). These results indicate that the radar sensitivity in detecting the extreme rainfall events must receive higher priority in future developments, especially for applications to the existing Mt. Merapi lahar early warning systems.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 118 ◽  
Author(s):  
Kreklow ◽  
Tetzlaff ◽  
Kuhnt ◽  
Burkhard

Quantitative precipitation estimates (QPE) derived from weather radars provide spatially and temporally highly resolved rainfall data. However, they are also subject to systematic and random bias and various potential uncertainties and therefore require thorough quality checks before usage. The dataset described in this paper is a collection of precipitation statistics calculated from the hourly nationwide German RADKLIM and RADOLAN QPEs provided by the German Weather Service (Deutscher Wetterdienst (DWD)), which were combined with rainfall statistics derived from rain gauge data for intercomparison. Moreover, additional information on parameters that can potentially influence radar data quality, such as the height above sea level, information on wind energy plants and the distance to the next radar station, were included in the dataset. The resulting two point shapefiles are readable with all common GIS and constitutes a spatially highly resolved rainfall statistics geodataset for the period 2006 to 2017, which can be used for statistical rainfall analyses or for the derivation of model inputs. Furthermore, the publication of this data collection has the potential to benefit other users who intend to use precipitation data for any purpose in Germany and to identify the rainfall dataset that is best suited for their application by a straightforward comparison of three rainfall datasets without any tedious data processing and georeferencing.


2013 ◽  
Vol 14 (3) ◽  
pp. 744-764 ◽  
Author(s):  
Shakti P. C., ◽  
M. Maki ◽  
S. Shimizu ◽  
T. Maesaka ◽  
D.-S. Kim ◽  
...  

Abstract Two approaches to correcting the partial beam blockage of radar reflectivity in mountainous areas were evaluated using X-band dual polarization radar data from the Hakone mountain region, Kanto, Japan. The comparatively simple digital elevation model (DEM) method calculates the power loss in the received signal based on the geometrical relationship between radar beams and a DEM. The second approach, the modified DEM method, attempts to account for unknown power losses related to ground clutter, hardware calibration errors, etc. Comparison between ground data and reflectivity data corrected by both methods suggests that the DEM method alone was insufficient to correct beam blockage problems but that the modified DEM data were in generally good agreement with the ground data. The authors also estimated 10-min rainfall amounts using reflectivity corrected by the modified DEM method and compared these with data from a network of rain gauges in the mountainous region. In general, the results show good agreement between radar estimates and rain gauge measurements. On the basis of their results, the authors conclude that the modified DEM method offers a suitable solution to the problem of beam blockage in mountainous regions, provided that the beam blockage rate is less than 80%.


2021 ◽  
Vol 13 (16) ◽  
pp. 3184
Author(s):  
Petr Novák ◽  
Hana Kyznarová ◽  
Martin Pecha ◽  
Petr Šercl ◽  
Vojtěch Svoboda ◽  
...  

In the past few years, demands on flash flood forecasting have grown. The Flash Flood Indicator (FFI) is a system used at the Czech Hydrometeorological Institute for the evaluation of the risk of possible occurrence of flash floods over the whole Czech Republic. The FFI calculation is based on the current soil saturation, the physical-geographical characteristics of every considered area, and radar-based quantitative precipitation estimates (QPEs) and forecasts (QPFs). For higher reliability of the flash flood risk assessment, calculations of QPEs and QPFs are crucial, particularly when very high intensities of rainfall are reached or expected. QPEs and QPFs entering the FFI computations are the products of the Czech Weather Radar Network. The QPF is based on the COTREC extrapolation method. The radar-rain gauge-combining method MERGE2 is used to improve radar-only QPEs and QPFs. It generates a combined radar-rain gauge QPE based on the kriging with an external drift algorithm, and, also, an adjustment coefficient applicable to radar-only QPEs and QPFs. The adjustment coefficient is applied in situations when corresponding rain gauge measurements are not yet available. A new adjustment coefficient scheme was developed and tested to improve the performance of adjusted radar QPEs and QPFs in the FFI.


2016 ◽  
Vol 19 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Carolina Guardiola-Albert ◽  
Carlos Rivero-Honegger ◽  
Robert Monjo ◽  
Andrés Díez-Herrero ◽  
Carlos Yagüe ◽  
...  

For the purposes of weather nowcasting, flood risk monitoring and water resources assessment, it is often difficult to achieve a reliable spatio-temporal representation of rainfall due to a low rain gauge network density. However, quantitative precipitation estimation (QPE) has acquired new prospects with the introduction of weather radars, thanks to their higher spatio-temporal resolution. Although a wide number of QPE algorithms are available for using C-band radar data, only a few studies have employed X-band radar. In this study the microscale rainfall variability in a small catchment is automatically measured using short-range X-band radar variograms and classifying precipitation into convective and stratiform types with a recently published index. The aim is to apply a straightforward geostatistical algorithm, named ordinary kriging of radar errors (OKRE), to integrate X-band radar and rain gauge measurements in a mountainous catchment (15 km2) in central Spain. As expected, convective events presented higher estimation errors due to their complex spatial and temporal variability. Despite this fact, errors are sufficiently small and results are reliable rainfall estimations. The two main contributions of this work are the adaptation of the OKRE method to small spatial scales and its application automatically differentiating between convective and stratiform events.


Sign in / Sign up

Export Citation Format

Share Document