scholarly journals Statistical Modeling to Predict Climate Change Effects on Watershed Scale Evapotranspiration

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1565
Author(s):  
Rajendra Khanal ◽  
Sulochan Dhungel ◽  
Simon C. Brewer ◽  
Michael E. Barber

Estimation of satellite-based remotely sensed evapotranspiration (ET) as consumptive use has been an integral part of agricultural water management. However, less attention has been given to future predictions of ET at watershed-scales especially since with a changing climate, there are additional challenges to planning and management of water resources. In this paper, we used nine years of total seasonal ET derived using a satellite-based remote sensing model, Mapping Evapotranspiration at Internalized Calibration (METRIC), to develop a Random Forest machine learning model to predict watershed-scale ET into the future. This statistical model used topographic and climate variables in agricultural areas of Lower Yakima, Washington and had a prediction accuracy of 88% for the region. This model was then used to predict ET into the future with changed climatic conditions under RCP4.5 and RCP8.5 emission scenarios expected by 2050s. The model result shows increases in seasonal ET across some areas of the watershed while decreases in other areas. On average, growing seasonal ET across the watershed was estimated to increase by +5.69% under the low emission scenario (RCP4.5) and +6.95% under the high emission scenario (RCP8.5).

2021 ◽  
Vol 16 (11) ◽  
pp. 114034
Author(s):  
Shukla Poddar ◽  
Jason P Evans ◽  
Merlinde Kay ◽  
Abhnil Prasad ◽  
Stephen Bremner

Abstract Solar photovoltaic (PV) energy is one of the fastest growing renewable energy sources globally. However, the dependency of PV generation on climatological factors such as the intensity of radiation, temperature, wind speed, cloud cover, etc can impact future power generation capacity. Considering the future large-scale deployment of PV systems, accurate climate information is essential for PV site selection, stable grid regulation, planning and energy output projections. In this study, the long-term changes in the future PV potential are estimated over Australia using regional climate projections for the near-future (2020–2039) and far-future (2060–2079) periods under a high emission scenario that projects 3.4 °C warming by 2100. The effects of projected changes in shortwave downwelling radiation, temperature and wind speed on the future performance of PV systems over Australia is also examined. Results indicate decline in the future PV potential over most of the continent due to reduced insolation and increased temperature. Northern coastal Australia experiences negligible increase in PV potential during the far future period due to increase in radiation and wind speed in that region. On further investigation, we find that the cell temperatures are projected to increase in the future under a high emission scenario (2.5 °C by 2079), resulting in increased degradation and risks of failure. The elevated cell temperatures significantly contribute to cell efficiency losses, that are expected to increase in the future (6–13 d yr−1 for multi-crystalline silicon cells) mostly around Western and central Australia indicating further reductions in PV power generation. Therefore, long-term PV power projections can help understand the variations in future power generation and identify regions where PV systems will be highly susceptible to losses in Australia.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1541
Author(s):  
Tongxia Wang ◽  
Zhengyong Zhang ◽  
Lin Liu ◽  
Zhongqin Li ◽  
Puyu Wang ◽  
...  

Under the background of global climate change, the variation in the spatial distribution and ice volume of mountain glaciers have a profound influence on regional economic development and ecological security. The development of glaciers is like biological succession; when climate change approaches or exceeds the threshold of suitable conditions for glacier development, it will lead to changes in potential distribution pattern. Therefore, from the perspective of the "biological" characteristics of glaciers, it is a beneficial exploration and attempt in the field of glaciology to explore its potential distribution law with the help of the niche model. The maximum entropy model (MaxEnt) can explain the environmental conditions suitable for the survival of things by analyzing the mathematical characteristics and distribution laws of samples in space. According to glacier samples and the geographical environment data screened by correlation analysis and iterative calculation, the potential distribution pattern of Tianshan glaciers in China in reference years (1970–2000) was simulated by MaxEnt. This paper describes the contribution of geographical environmental factors to distribution of glaciers in Tianshan Mountains, quantifies the threshold range of factors affecting the suitable habitat of glaciers, and predicts the area variation and distribution pattern of glaciers under different climate scenarios (SSP1-2.6, SSP5-8.5) in the future (2040–2060, 2080–2100). The results show that the MaxEnt model has good adaptability to simulate the distribution of glaciers. The spatial heterogeneity of potential distribution of glaciers is caused by the spatio-temporal differences of hydrothermal combination and topographic conditions. Among the environmental variables, precipitation during the wettest month, altitude, annual mean temperature, and temperature seasonality have more significant effects on the potential distribution of glaciers. There is significant spatial heterogeneity in the potential distribution of glaciers in different watersheds, altitudes, and aspects. From the forecast results of glacier in various climatic scenarios in the future, about 18.16–27.62% of the total reference year glacier area are in an alternating change of melting and accumulation, among which few glaciers are increasing, but this has not changed the overall retreat trend of glaciers in the study area. Under the low emission scenario, the glacier area of the Tianshan Mountains in China decreased by 18.18% and 23.73% respectively in the middle and end of the 21st century compared with the reference years and decreased by 20.04% and 27.63%, respectively, under the high emission scenario, which showed that the extent of glacier retreat is more intense under the high emission scenario. Our study offers momentous theoretical value and practical significance for enriching and expanding the theories and analytical methods of the glacier change.


2019 ◽  
Vol 116 (10) ◽  
pp. 1721 ◽  
Author(s):  
Veena Prasad ◽  
Anil V. Kulkarni ◽  
S. Pradeep ◽  
S. Pratibha ◽  
Sayli A. Tawde ◽  
...  

2021 ◽  
Author(s):  
Enhui Liao ◽  
Laure Resplandy ◽  
Junjie Liu ◽  
Kevin Bowman

<p>El Niño events weaken the strong natural oceanic source of CO<sub>2</sub> in the Tropical Pacific Ocean, partly offsetting the simultaneous release of CO<sub>2</sub> from the terrestrial biosphere during these events. Yet, uncertainties in the magnitude of this ocean response and how it will respond to the projected increase in extreme El Niño in the future (Cai et al., 2014) limit our understanding of the global carbon cycle and its sensitivity to climate. Here, we examine the mechanisms controlling the air-sea CO<sub>2</sub> flux response to El Niño events and how it will evolve in the future, using multidecadal ocean pCO<sub>2</sub> observations in conjunction with CMIP6 Earth system models (ESMs) and a state‐of‐the‐art ocean biogeochemical model. We show that the magnitude, spatial extent, and duration of the anomalous ocean CO<sub>2</sub> drawdown increased with El Niño intensity in the historical period. However, this relationship reverses in the CMIP6 projections under the high emission scenario. ESMs project more intense El Niño events, but weaker CO<sub>2</sub> flux anomalies in the future. This unexpected response is controlled by two factors: a stronger compensation between thermally-driven outgassing and non-thermal drawdown (56% of the signal); and less pronounced wind anomalies limiting the impact of El Niño on air-sea CO<sub>2</sub> exchanges (26% of the signal). El Niños should no longer reinforce the net global oceanic sink in the future, but have a near-neutral effect or even release CO<sub>2</sub> to the atmosphere, reinforcing the concurrent release of CO<sub>2</sub> from the terrestrial biosphere.</p>


2018 ◽  
Author(s):  
OCTO

The effects of climate change can be perceived when the signal of human-altered climate is louder than the noise of natural climatic variations. The point at which the signal outweighs the noise is called the time of emergence (TOE). If the signal of climate-change is predicted to be statistically greater than the noise in, for example, 20 years, you would say the TOE is 20 years. In this example, in 20 years from now, one would be expected to legitimately notice an altered climate. Using climate models under a high-emission scenario, the authors predicted the TOE for perceivable changes in temperature and precipitation for a variety of both marine and terrestrial habitats, and major population centers.


2021 ◽  
Author(s):  
Yu Shi ◽  
Yajie Zhang ◽  
Bingyan Wu ◽  
Hao Shi ◽  
Linchao Li ◽  
...  

Abstract Adaption based on social resilience is proposed as effective measures to mitigate hunger and avoid disaster caused by climate change. But these have not been investigated comprehensively in climate-sensitive regions especially necessary-quantitative paths. North Korea (NK, undeveloped) and its neighbors (SK, South Korea, developed; China, developing) represent three economic levels that provide us with examples of how to examine climatic risk and quantify the contribution of social resilience to rice production. Our data-driven estimates show that climatic factors determined rice biomass changes in NK, while non-climatic factors dominated biomass changes in NK’s neighbors. If no action is taken, NK will face a higher climatic risk (with continuous high temperature heatwaves and precipitation extremes) by the 2080s with high emission scenario when rice biomass and production are expected to decrease by 20.2% and 14.4%, respectively, thereby potentially increasing hunger in NK. The contribution of social resilience to food production in the undeveloped region (15.2%) was far below the contribution observed in the developed and developing regions (83.0% and 86.1%, respectively). These findings highlight the importance of social resilience to mitigate the negative effects of climate change on food security and human hunger, and provide necessary-quantitative information.


2007 ◽  
Vol 56 (12) ◽  
pp. 29-35 ◽  
Author(s):  
D. Butler ◽  
B. McEntee ◽  
C. Onof ◽  
A. Hagger

This paper describes a study of the potential effects of climate change on the design and performance of sewer storage tanks. A long-term synthetic rainfall time-series has been derived based on the IPPC medium-high emission scenario for a case study in London. Results indicate a 35% increase in the number of storm events that cause filling of the tank and a 57% increase in the average volume of storage required. A method to estimate the required future storage volume for any given return period has been developed and described. Indications are that significantly larger storage volumes will be required to maintain the same level of flood protection.


2018 ◽  
Vol 115 (52) ◽  
pp. 13294-13299 ◽  
Author(s):  
Christian Hof ◽  
Alke Voskamp ◽  
Matthias F. Biber ◽  
Katrin Böhning-Gaese ◽  
Eva Katharina Engelhardt ◽  
...  

Climate and land-use change interactively affect biodiversity. Large-scale expansions of bioenergy have been suggested as an important component for climate change mitigation. Here we use harmonized climate and land-use projections to investigate their potential combined impacts on global vertebrate diversity under a low- and a high-level emission scenario. We combine climate-based species distribution models for the world’s amphibians, birds, and mammals with land-use change simulations and identify areas threatened by both climate and land-use change in the future. The combined projected effects of climate and land-use change on vertebrate diversity are similar under the two scenarios, with land-use change effects being stronger under the low- and climate change effects under the high-emission scenario. Under the low-emission scenario, increases in bioenergy cropland may cause severe impacts in biodiversity that are not compensated by lower climate change impacts. Under this low-emission scenario, larger proportions of species distributions and a higher number of small-range species may become impacted by the combination of land-use and climate change than under the high-emission scenario, largely a result of bioenergy cropland expansion. Our findings highlight the need to carefully consider both climate and land-use change when projecting biodiversity impacts. We show that biodiversity is likely to suffer severely if bioenergy cropland expansion remains a major component of climate change mitigation strategies. Our study calls for an immediate and significant reduction in energy consumption for the benefit of both biodiversity and to achieve the goals of the Paris Agreement.


Sign in / Sign up

Export Citation Format

Share Document