scholarly journals Evaluation of Fe XIV Intensity Ratio for Electron Density Diagnostics by Laboratory Measurements

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Nagaaki Kambara ◽  
Tomoko Kawate ◽  
Tetsutarou Oishi ◽  
Yasuko Kawamoto ◽  
Hiroyuki A. Sakaue ◽  
...  

The intensity ratio of Fe XIV 264.765A/274.203A is useful to determine the electron density of solar corona, and the relationship between the electron density and the intensity ratio obtained from a model should be evaluated using laboratory plasmas to estimate the electron density more precisely. We constructed a new collisional–radiative model (CR-model) for Fe XIV (an Al-like iron ion) by considering the processes of proton-impact excitation and electron-impact ionization to the excited states of a Mg-like iron ion. The atomic data used in the CR-model were calculated using the HULLAC atomic code. The model was evaluated based on laboratory experiments using a compact electron beam ion trap, called CoBIT, and the Large Helical Device (LHD). The measured Fe XIV 264.785 Å/274.203 Å line intensity ratio with CoBIT was 1.869 ± 0.036, and it agreed well with our CR-model results. Concurrently, the measured ratio using LHD was larger than the results of our CR-model and CHIANTI. The estimated electron densities using our CR-model agreed with those from CHIANTI within a factor of 1.6–2.4 in the range of ne≈1010−11cm−3. Further model development is needed to explain the ratio in a high-electron density region.

2008 ◽  
Vol 86 (1) ◽  
pp. 209-216 ◽  
Author(s):  
D W Savin ◽  
N R Badnell ◽  
P Beiersdorfer ◽  
B R Beck ◽  
G V Brown ◽  
...  

Many astrophysical and laboratory plasmas possess Maxwell–Boltzmann (MB) electron energy distributions (EEDs). Interpreting or predicting the properties of these plasmas requires accurate knowledge of atomic processes such as radiative lifetimes, electron impact excitation and de-excitation, electron impact ionization, radiative recombination, dielectronic recombination, and charge transfer, all for thousands of levels or more. Plasma models cannot include all of the needed levels and atomic data. Hence, approximations need to be made to make the models tractable. Here we report on an “analog” technique we have developed for simulating a Maxwellian EED using an electron beam ion trap and review some recent results using this method. A subset of the atomic data needed for modeling Maxwellian plasmas relates to calculating the ionization balance. Accurate fractional abundance calculations for the different ionization stages of the various elements in the plasma are needed to reliably interpret or predict the properties of the gas. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. Here we will also review our recent updating of the recommended atomic data for “digital’ computer simulations of MB plasmas in collisional ionization equilibrium (CIE), describe the changes relative to previously recommended CIE calculations, and discuss what further recombination and ionization data are needed to improve this latest set of recommended CIE calculations. PACS Nos.: 34.70.+e,34.80.Dp, 34.80.Kw, 34,80,Lx, 52.50.–j, 52.20.Fs, 52.20.Hv, 52.25.Jm, 52,72.+v, 52.75.–d, 95.30.Dr, 95.30.Ky, 98.38.Bn, 98.58.Bz


1996 ◽  
Vol 152 ◽  
pp. 525-529
Author(s):  
F.P. Keenan ◽  
J.J. Drake ◽  
V.J. Foster ◽  
C.J. Greer ◽  
S.S. Tayal ◽  
...  

Recent R-matrix calculations of electron impact excitation rates for Fe XIII are used to derive the theoretical electron density sensitive emission line ratios R1 = I(318.12 Å)/I(320.80 Å) and R2 = I(256.42 Å)/I(251.95 Å), which are found to be up to 50% different from earlier diagnostics. A comparison of the current line ratios with both solar flare and active region observations, obtained by the Naval Research Laboratory’s S082A spectrograph on board Skylab, reveals generally good agreement between densities deduced from Fe XIII and those estimated from diagnostic line ratios in species formed at similar temperatures. This provides experimental support for the accuracy of the line ratio calculations, and hence the atomic data adopted in their derivation. In Extreme Ultraviolet Explorer satellite (EUVE) spectra the Fe XIII emission lines are found to be severely blended. However, an analysis of these lines measured in the spectra of Procyon and α Cen demonstrates that they still allow very approximate values of the electron density to be inferred. Moreover, it should be possible to increase the accuracy of the measured line fluxes, and hence of the inferred densities, if longer exposures of the stars concerned can be obtained.


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


1994 ◽  
Vol 358 ◽  
Author(s):  
G. Gumbs

ABSTRACTA self-consistent many-body theory is developed to study the effect of temperature and electron density on the interband absorption coefficient and the frequency-dependent refractive index for an array of isolated quantum wires. The peaks in the absorption coefficient correspond to interband transitions resulting in the resonant absorption of light. The oscillations in the derivative spectrum are due to the quantization of the energy levels related to the in-plane confining potential for such reduced dimensional systems. There are appreciable changes in the absorption spectrum when the electron density or temperature is increased. One interband transition peak is suppressed in the high electron density limit and the thermal depopulation effect on the electron subbands can be easily seen when the temperature is high. We also find that the exciton coupling weakens the shoulder features in the absorption spectrum. This study is relevant to optical characterization of the confining potential and the areal density of electrons using photoreflectance. By using incident light with tunable frequencies in the interband excitation regime, contactless photoreflectance measurements may be carried out and the data compared with our calculations. By fitting the numerical results to the peak positions of the photoreflectance spectrum, the number of electrons in each wire may be extracted.


2017 ◽  
Vol 28 (4) ◽  
pp. 759-764 ◽  
Author(s):  
Chen-Guang Wang ◽  
Zhi-Hai Cheng ◽  
Xiao-Hui Qiu ◽  
Wei Ji

1991 ◽  
Vol 70 (1) ◽  
pp. 529-531 ◽  
Author(s):  
Enrico Zanoni ◽  
Alessandro Paccagnella ◽  
Pietro Pisoni ◽  
Paolo Telaroli ◽  
Carlo Tedesco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document