scholarly journals Overview of Optical Digital Measuring Challenges and Technologies in Laser Welded Components in EV Battery Module Design and Manufacturing

Batteries ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Heikki Saariluoma ◽  
Aki Piiroinen ◽  
Anna Unt ◽  
Jukka Hakanen ◽  
Tuomo Rautava ◽  
...  

Ensuring the precision and repeatability of component assembly in the production of electric vehicle (EV) battery modules requires fast and accurate measuring methods. The durability of EV battery packs depends on the quality of welded connections, therefore exact positioning of the module components is critical for ensuring safety in exploitation. Laser welding is a non-contact process capable of welding dissimilar materials with high precision, for that reason it has become the preferred joining method in battery production. In high volume manufacturing, one of the main production challenges is reducing the time required for assessment of dimensional and geometrical accuracy prior to joining. This paper reviews the challenges of EV battery design and manufacturing and discusses commercially available scanner-based measurement systems suitable for fabrication of battery pack components. Versatility of novel metrological systems creates new opportunities for increasing the production speed, quality and safety of EV battery modules.

2021 ◽  
Vol 11 (5) ◽  
pp. 2326
Author(s):  
Claudio Favi ◽  
Roberto Garziera ◽  
Federico Campi

Welding is a consolidated technology used to manufacture/assemble large products and structures. Currently, welding design issues are tackled downstream of the 3D modeling, lacking concurrent development of design and manufacturing engineering activities. This study aims to define a method to formalize welding knowledge that can be reused as a base for the development of an engineering design platform, applying design for assembly method to assure product manufacturability and welding operations (design for welding (DFW)). The method of ontology (rule-based system) is used to translate tacit knowledge into explicit knowledge, while geometrical feature recognition with parametric modeling is adopted to couple geometrical information with the identification of welding issues. Results show how, within the design phase, manufacturing issues related to the welding operations can be identified and fixed. Two metal structures (a jack adapter of a heavy-duty prop and a lateral frame of a bracket structure) fabricated with arc welding processes were used as case studies and the following benefits were highlighted: (i) anticipation of welding issues related to the product geometry and (ii) reduction of effort and time required for the design review. In conclusion, this research moves forward toward the direction of concurrent engineering, closing the gap between design and manufacturing.


Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multimaterial designs and components in mainstream industrial applications. The use of multimaterial components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe (FSS) technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding (FSW) in reference to joining dissimilar metals and polymer/metal combinations.


Author(s):  
S. Shawn Lee ◽  
Tae H. Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

Automotive battery packs for electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEV) typically consist of a large number of battery cells. These cells must be assembled together with robust mechanical and electrical joints. Joining of battery cells presents several challenges such as welding of highly conductive and dissimilar materials, multiple sheets joining, and varying material thickness combinations. In addition, different cell types and pack configurations have implications for battery joining methods. This paper provides a comprehensive review of joining technologies and processes for automotive lithium-ion battery manufacturing. It details the advantages and disadvantages of the joining technologies as related to battery manufacturing, including resistance welding, laser welding, ultrasonic welding and mechanical joining, and discusses corresponding manufacturing issues. Joining processes for electrode-to-tab, tab-to-tab (tab-to-bus bar), and module-to-module assembly are discussed with respect to cell types and pack configuration.


Author(s):  
Mark R. Virkler

A variety of methods have been developed for determining appropriate pedestrian crossing times at signalized intersections. Although many of these methods have useful applications, all have significant shortcomings when estimating the crossing time required under high-volume conditions and with two-way flow within a crosswalk. Existing methods are described. A field study conducted to address these shortcomings is then described. The results of the study are used to develop relationships to describe pedestrian flow at signalized crossings. Recommendations are then made to improve the signal timing parameters used for higher-volume pedestrian flows.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wai-Yoong Ng ◽  
Chin-Pin Yeo

Clot activator serum tubes have significantly improved turnaround times for result reporting compared to plain tubes. With increasing workload and service performance expectations confronting clinical laboratories with high-volume testing and with particular emphasis on critical analytes, attention has focussed on preanalytical variables that can be improved. We carried out a field study on the test performance of BD vacutainer rapid serum tubes (RSTs) compared to current institutional issued BD vacutainer serum separator tubes (SSTs) in its test result comparability, clotting time, and stability on serum storage. Data from the study population (n=160) of patients attending outpatient clinics and healthy subjects showed that results for renal, liver, lipids, cardiac, thyroid, and prostate biochemical markers were comparable between RSTs and SSTs. Clotting times of the RSTs were verified to be quick with a median time of 2.05 min. Analyte stability on serum storage at 4°C showed no statistically significant deterioration except for bicarbonate, electrolytes, and albumin over a period of 4 days. In conclusion, RSTs offered savings in the time required for the clotting process of serum specimens. This should translate to further trimming of the whole process from blood collection to result reporting without too much sacrifice on test accuracy and performance compared to the current widely used SSTs in most clinical laboratories.


Author(s):  
YoungJun Kim ◽  
Uma Jayaram ◽  
Sankar Jayaram ◽  
Venkata K. Jandhyala ◽  
Tatsuki Mitsui

The hierarchy of assembly components in a CAD assembly model is rarely a true representation of the sequence of assembly of these components during manufacturing. Thus, any assembly planning or evaluation software system needs to re-order and re-group the various components of the CAD assembly model to reflect the sequence of component assembly. Although all parametric CAD systems allow reorganization of the assembly tree, it is a difficult and timeconsuming process due to the relationships and constraints between the various components. We propose an alternative hybrid method that couples the CAD system and a visualization tool that supports reorganization, while preserving data, to allow fast and easy rearranging of the assembly hierarchy. Also, after the reorganization, polygonal representations of the new sub-assemblies are created and the original constraints are also transformed in a consistent manner. As a next logical step, we compare the time required to rearrange the assembly hierarchy using both methods — the CAD system alone and the hybrid system. A statistical analysis using three treatment factors indicates that if the number of components is more than 15, then it is more efficient to use the hybrid method over the CAD system. The overarching goal was to allow fast and efficient creation of different assembly hierarchies to allow the corresponding assembly sequences to be verified in a virtual assembly application that derives its models and constraints from the assembly hierarchy in the CAD system. We have implemented the method to allow the successful reorganization and virtual assembly verification of many industry models, some with several hundred components, provided by various industry partners.


2011 ◽  
Author(s):  
Robert Parrish ◽  
Kanthasamy Elankumaran ◽  
Milind Gandhi ◽  
Bryan Nance ◽  
Patrick Meehan ◽  
...  

Author(s):  
Suchitra D ◽  
Rajarajeswari R ◽  
Dhruv Singh Bhati

AbstractAn accumulator or battery is an energy storage cramped in an adaptable stockade. Lithium-ion batteries are commonly used in hybrid electric vehicles (HEV) and battery operated electric vehicles (BOEV) due to its eco-friendliness and increased efficiency. To maintain lithium batteries in the safe operating region and also to perform tasks like cell balancing, preventing thermal runaway, maintain the state of health, an effective battery management system (BMS) is required. The BMS should also communicate effectively between host devices and battery packs. This paper proposes a reliable, modular and cost-efficient BMS, which will emanate an alert when a fault occurs and thus preventing the battery from damage. An efficient control strategy has been proposed for charging and discharging of the battery pack. The thermal analysis of the lithium-ion battery used in this work is simulated using battery design studio (BDS) with the inclusion of a self-discharging effect. The proposed hardware setup also provides a provision for on-board diagnosis (OBD) and logging in the accumulator management system (AMS) to constantly monitor the cell parameters like voltage, current, and temperature. The live data display of AMS working is also shown during abnormal and normal conditions. Also, an attempt is made to use the design of proposed AMS for HEV.


2020 ◽  
Vol 41 (S1) ◽  
pp. s423-s423
Author(s):  
Ginny Moore ◽  
Simon Parks ◽  
Allan Bennett

Background: A multinational outbreak of Mycobacterium chimaera endocarditis following cardiac surgery has been attributed to the use of heater-cooler units (HCUs) during cardiopulmonary bypass. It is hypothesized that mycobacteria can be transmitted to the surgical site via the aerosolization of contaminated water from within the unit. In the United Kingdom, M. chimaera infections have been linked to 1 specific make and model of HCU, which was shown to generate microbial aerosols when circulating water. The manufacturer has since modified this HCU and claims that the dispersal of aerosols has now been prevented. M. chimaera is a common contaminant of HCUs, regardless of make, model, and manufacturer. To help inform local decision making, hospitals require evidence that this modified HCU and/or alternative heater-cooler systems can reduce the risk of mycobacterial infection by incorporating design features that prevent the generation of microbial aerosols external to the device. The time required to culture M. chimaera means investigations focusing on naturally or artificially contaminated HCUs are problematic. Instead, specialist aerobiological techniques incorporating a nonpathogenic, aerostable, biological tracer (Bacillus atrophaeus) were used to investigate microbial aerosols generated and released from brand-new and ‘upgraded’ HCUs. Methods: 4 HCUs (A–D), supplied directly by the manufacturers, were filled with filtered tap water, and high numbers of B. atrophaeus (109 CFU/L) were added to the tanks. High-volume cyclone samplers were used to sample the air when each HCU was switched off and during different operational phases. Samplers were operated for 5 minutes and the collecting fluid cultured for B. atrophaeus. The number of colonies was converted to CFU per cubic meter of air. Results: Under controlled experimental conditions, HCU-A released a small but significant level of aerosol during operational phases (eg, cooling) that resulted in increased pressure within the tank. The filler flap was identified as the principal area of aerosol release. The circulation of water within HCU-B and HCU-C was shown to generate an aerosol but, when connected to an ‘aerosol collection set,’ this aerosol was not released. However, it is essential that effective and sufficient vacuum is maintained. There was no aerosol release from HCU-D. Conclusions: A specialist in aerobiology using a biological tracer can determine the level of aerosol released from an HCU and its location. However, transmission of M. chimaera could occur via aerosolization of contaminated water, but it is not the only possible route of infection. The efficacy of recommended decontamination procedures must also be assured.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document