scholarly journals 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs

2020 ◽  
Vol 7 (2) ◽  
pp. 32 ◽  
Author(s):  
Hun-Jin Jeong ◽  
Hyoryung Nam ◽  
Jinah Jang ◽  
Seung-Jae Lee

It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.

2018 ◽  
Vol 6 (5) ◽  
pp. 915-946 ◽  
Author(s):  
P. Selcan Gungor-Ozkerim ◽  
Ilyas Inci ◽  
Yu Shrike Zhang ◽  
Ali Khademhosseini ◽  
Mehmet Remzi Dokmeci

Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. In all bioprinting strategies, the bioinks are an essential component. We provide an in-depth discussion of the different bioinks currently employed for bioprinting, and outline some future perspectives in their further development.


Author(s):  
Andy Wen Loong Liew ◽  
Yilei Zhang

 Tissue-engineered products commercially available today have been limited to thin avascular tissue such as skin and cartilage. The fabrication of thicker, more complex tissue still eludes scientists today. One reason for this is the lack of effective techniques to incorporate functional vascular networks within thick tissue constructs. Vascular networks provide cells throughout the tissue with adequate oxygen and nutrients; cells located within thick un-vascularized tissue implants eventually die due to oxygen and nutrient deficiency. Vascularization has been identified as one of the key components in the field of tissue engineering. In order to fabricate biomimetic tissue which accurately recapitulates our native tissue environment, in vitro pre-vascularization strategies need to be developed. In this review, we describe various in vitro vascularization techniques developed recently which employ different technologies such as bioprinting, microfluidics, micropatterning, wire molding, and cell sheet engineering. We describe the fabrication process and unique characteristics of each technique, as well as provide our perspective on the future of the field.


MRS Bulletin ◽  
2017 ◽  
Vol 42 (05) ◽  
pp. 350-355 ◽  
Author(s):  
Nicholas Baksh ◽  
Nathan D. Gallant ◽  
Ryan G. Toomey

Abstract


2015 ◽  
Vol 103 (12) ◽  
pp. 3825-3833 ◽  
Author(s):  
Akiyuki Hasegawa ◽  
Yuji Haraguchi ◽  
Tatsuya Shimizu ◽  
Teruo Okano

2019 ◽  
Vol 20 (22) ◽  
pp. 5656 ◽  
Author(s):  
Min-Ah Koo ◽  
Mi Hee Lee ◽  
Jong-Chul Park

Cell sheet engineering has evolved rapidly in recent years as a new approach for cell-based therapy. Cell sheet harvest technology is important for producing viable, transplantable cell sheets and applying them to tissue engineering. To date, most cell sheet studies use thermo-responsive systems to detach cell sheets. However, other approaches have been reported. This review provides the progress in cell sheet detachment techniques, particularly reactive oxygen species (ROS)-responsive strategies. Therefore, we present a comprehensive introduction to ROS, their application in regenerative medicine, and considerations on how to use ROS in cell detachment. The review also discusses current limitations and challenges for clarifying the mechanism of the ROS-responsive cell sheet detachment.


2020 ◽  
Vol 318 ◽  
pp. 01045
Author(s):  
Gokhan Ates

In tissue engineering, three-dimensional functional scaffolds with tailored biological properties are needed to be able to mimic the hierarchical structure of biological tissues. Recent developments in additive biomanufacturing allow to extrude multiple materials enabling the fabrication of more sophisticated tissue constructs. These multi-material biomanufacturing systems comprise multiple printing heads through which individual materials are sequentially printed. Nevertheless, as more printing heads are added the fabrication process significantly decreases, since it requires mechanical switching among the physically separated printheads to enable printing multiple materials. In addition, this approach is not able to create biomimetic tissue constructs with property gradients. To address these limitations, this paper presents a novel static mixing extrusion printing head to enable the fabrication of multi-material, functionally graded structures using a single nozzle. Computational fluid dynamics (CFD) was used to numerically analyze the influence of Reynolds number on the flow pattern of biomaterials and mixing efficiency considering different miscible materials.


2006 ◽  
Vol 116 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Joseph Yang ◽  
Masayuki Yamato ◽  
Kohji Nishida ◽  
Takeshi Ohki ◽  
Masato Kanzaki ◽  
...  

Leonardo ◽  
2017 ◽  
Vol 50 (2) ◽  
pp. 195-196
Author(s):  
Eugen Bogdan Petcu

Cancer patients require a complex multidisciplinary therapy. In this context the 3D additive biological manufacturing could represent a significant development with potential significant medical and social consequences. This article reviews the 3D bioprinting methods and clinical settings in which this new revolutionary method could be applied. Apart from the actual field of post-cancer therapy prosthetics and medical education, this method could be applied in the actual molecular cancer research and organ regeneration/fabrication. Considering all of these, it is possible that in the future, 3D biological printing could be used on a regular basis in clinical oncology.


Sign in / Sign up

Export Citation Format

Share Document