scholarly journals Effect of Different Types of Face Masks on the Ventilatory and Cardiovascular Response to Maximal-Intensity Exercise

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 969
Author(s):  
Miguel A. Rojo-Tirado ◽  
José A. Benítez-Muñoz ◽  
María Alcocer-Ayuga ◽  
Víctor M. Alfaro-Magallanes ◽  
Nuria Romero-Parra ◽  
...  

The development of new models of face masks makes it necessary to compare their impact on exercise. Therefore, the aim of this work was to compare the cardiopulmonary response to a maximal incremental test, perceived ventilation, exertion, and comfort using FFP2 or Emotion masks in young female athletes. Thirteen healthy sportswomen (22.08 ± 1.75 years) performed a spirometry, and a graded exercise test on a treadmill, with a JAEGER® Vyntus CPX gas analyzer using an ergospirometry mask (ErgoMask) or wearing the FFP2 or the Emotion mask below the ErgoMask, randomized on 3 consecutive days. Also, menstrual cycle status was monitored to avoid possible intrasubject alterations. The results showed lower values for the ErgoMask+FFP2, compared to ErgoMask or ErgoMask+Emotion, in forced vital capacity (3.8 ± 0.2, 4.5 ± 0.2 and 4.1 ± 0.1 l, respectively); forced expiratory volume in 1 s (3.3 ± 0.2, 3.7 ± 0.2 and 3.5 ± 0.1 l); ventilation (40.9 ± 1.5, 50.6 ± 1.5 and 46.9 ± 1.2 l/min); breathing frequency (32.7 ± 1.1, 37.4 ± 1.1 and 35.3 ± 1.4 bpm); VE/VO2 (30.5 ± 0.7, 34.6 ± 0.9 and 33.6 ± 0.7); VE/VCO2 (32.2 ± 0.6, 36.2 ± 0.9 and 34.4 ± 0.7) and time to exhaustion (492.4 ± 9.7, 521.7 ± 8.6 and 520.1 ± 9.5 s) and higher values in inspiratory time (0.99 ± 0.04, 0.82 ± 0.03 and 0.88 ± 0.03 s).. In conclusion, in young healthy female athletes, the Emotion showed better preservation of cardiopulmonary responses than the FFP2.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Adam Kantanista ◽  
Agata Glapa ◽  
Adrianna Banio ◽  
Wiesław Firek ◽  
Anna Ingarden ◽  
...  

Background. The aim of the study was to evaluate differences in body image across different types of sports in highly trained female athletes. Methods. 242 female individuals, aged 13–30 years (M=20.0, SD = 4.5), representing aesthetic sports (n=56) and nonaesthetic sports (n=186), were recruited from different sports clubs in Poland. Body image, BMI, age, the level of competition attained, and the training background of participants were recorded. Results. One-way ANOVA showed differences in the body image of athletes engaged in different types of sport (F(11,230)=4.10, p<0.001, and η2=0.16). The model predicting the body image of female athletes was significant (F(5,236)=10.40, p<0.001); the adjusted R2=0.163. Type of sport explained 7.1% (β=–0.263, p<0.001), age explained 4.5% (β=0.341,p<0.001), BMI explained 3.6% (β=–0.230,p<0.001), and level of competition explained 0.9% (β=0.153, p<0.05) of variance in body image. Conclusions. The findings provide vital new knowledge which can be used by researchers and practitioners in designing educational programs on weight-related behaviors in female athletes. Such programs should be implemented especially in young female athletes participating in high-level sporting activities at an early stage.


Author(s):  
Longxiang Su ◽  
Yinghua Guo ◽  
Yajuan Wang ◽  
Delong Wang ◽  
Changting Liu

AbstractTo explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P&lt; 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50 and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P&lt; 0.05). Neither control nor CM groups showed significant differences in the pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG CMs.


2021 ◽  
pp. 021849232110100
Author(s):  
Neetika Katiyar ◽  
Sandeep Negi ◽  
Sunder Lal Negi ◽  
Goverdhan Dutt Puri ◽  
Shyam Kumar Singh Thingnam

Background Pulmonary complications after cardiac surgery are very common and lead to an increased incidence of post-operative morbidity and mortality. Several factors, either modifiable or non-modifiable, may contribute to the associated unfavorable consequences related to pulmonary function. This study was aimed to investigate the degree of alteration and factors influencing pulmonary function (forced expiratory volume in one second (FEV1) and forced vital capacity), on third, fifth, and seventh post-operative days following cardiac surgery. Methods This study was executed in 71 patients who underwent on-pump cardiac surgery. Pulmonary function was assessed before surgery and on the third, fifth, and seventh post-operative days. Data including surgical details, information about risk factors, and assessment of pulmonary function were obtained. Results The FEV1 and forced vital capacity were significantly impaired on post-operative days 3, 5, and 7 compared to pre-operative values. The reduction in FEV1 was 41%, 29%, and 16% and in forced vital capacity was 42%, 29%, and 19% consecutively on post-operative days 3, 5, and 7. Multivariate analysis was done to detect the factors influencing post-operative FEV1 and forced vital capacity. Discussion This study observed a significant impairment in FEV1 and forced vital capacity, which did not completely recover by the seventh post-operative day. Different factors affecting post-operative FEV1 and forced vital capacity were pre-operative FEV1, age ≥60, less body surface area, lower pre-operative chest expansion at the axillary level, and having more duration of cardiopulmonary bypass during surgery. Presence of these factors enhances the chance of developing post-operative pulmonary complications.


2021 ◽  
pp. 1-11
Author(s):  
Mianfang Ruan ◽  
Qiang Zhang ◽  
Xin Zhang ◽  
Jing Hu ◽  
Xie Wu

BACKGROUND: It remains unclear if plyometric training as a single component could improve landing mechanics that are potentially associated with lower risk of ACL injury in the long term OBJECTIVE: The purpose of this study was to investigate the influence of experience undertaking plyometrics on landing biomechanics in female athletes. METHODS: Non-jumpers with little experience in plyometric training (12 female college swimmers) and jumpers with five years of experience in plyometric training (12 female college long jumpers and high jumpers) were recruited to participate in two testing sessions: an isokinetic muscle force test for the dominant leg at 120∘/s and a 40-cm drop landing test. An independent t test was applied to detect any significant effects between cohorts for selected muscle force, kinematic, kinetic, and electromyography variables. RESULTS: While female jumpers exhibited greater quadriceps eccentric strength (P= 0.013) and hamstring concentric strength (P= 0.023) during isokinetic testing than female swimmers, no significant differences were observed in kinematics, kinetics, and muscle activities during both drop landing and drop jumping. CONCLUSIONS: The results suggest that the female jumpers did not present any training-induced modification in landing mechanics regarding reducing injury risks compared with the swimmers. The current study revealed that plyometric training as a single component may not guarantee the development of low-risk landing mechanics for young female athletes.


2007 ◽  
Vol 22 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Carrie Chueiri Ramos Galvan ◽  
Antônio José Maria Cataneo

PURPOSE: To evaluate the effect of utilization of a specific training program of respiratory muscles on pulmonary function in tobacco smokers. METHODS: Fifty asymptomatic tobacco smokers with age superior to 30 years were studied, at the moments: A0 - initial evaluation followed by protocol of respiratory exercises; A1 - reevaluation after 10 minutes of protocol application; and A2 - final reevaluation after 2 weeks of training utilizing the same protocol 3 times per week. The evaluation was realized through measures of maximum respiratory pressures (PImax and PEmax), respiratory peak flow (IPF and EPF), maximum voluntary ventilation (MVV), forced vital capacity (FVC) and forced expiratory volume at the 1st second (FEV1). RESULTS: There was no improvement from initial to final evaluation in FVC and FEV1. But there were significant increases in the variables IPF, EPF, MVV and PImax at evaluations A1 and A2. The PEmax variable increased only at evaluation A2. CONCLUSION: The application of the protocol of respiratory exercises with and without additional load in tobacco smokers produced immediate improvement in the performance of respiratory muscles, but this gain was more accentuated after 2 weeks of exercise.


2002 ◽  
Vol 93 (4) ◽  
pp. 1384-1390 ◽  
Author(s):  
Emanuele Crimi ◽  
Riccardo Pellegrino ◽  
Manlio Milanese ◽  
Vito Brusasco

Deep breaths taken before inhalation of methacholine attenuate the decrease in forced expiratory volume in 1 s and forced vital capacity in healthy but not in asthmatic subjects. We investigated whether this difference also exists by using measurements not preceded by full inflation, i.e., airway conductance, functional residual capacity, as well as flow and residual volume from partial forced expiration. We found that five deep breaths preceding a single dose of methacholine 1) transiently attenuated the decrements in forced expiratory volume in 1 s and forced vital capacity in healthy ( n = 8) but not in mild asthmatic ( n = 10) subjects and 2) increased the areas under the curve of changes in parameters not preceded by a full inflation over 40 min, during which further deep breaths were prohibited, without significant difference between healthy ( n = 6) and mild asthmatic ( n = 16) subjects. In conclusion, a series of deep breaths preceding methacholine inhalation significantly enhances bronchoconstrictor response similarly in mild asthmatic and healthy subjects but facilitates bronchodilatation on further full inflation in the latter.


1991 ◽  
Vol 71 (3) ◽  
pp. 878-885 ◽  
Author(s):  
J. M. Clark ◽  
R. M. Jackson ◽  
C. J. Lambertsen ◽  
R. Gelfand ◽  
W. D. Hiller ◽  
...  

As a pulmonary component of Predictive Studies V, designed to determine O2 tolerance of multiple organs and systems in humans at 3.0–1.5 ATA, pulmonary function was evaluated at 1.0 ATA in 13 healthy men before and after O2 exposure at 3.0 ATA for 3.5 h. Measurements included flow-volume loops, spirometry, and airway resistance (Raw) (n = 12); CO diffusing capacity (n = 11); closing volumes (n = 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). Chest discomfort, cough, and dyspnea were experienced during exposure in mild degree by most subjects. Mean forced expiratory volume in 1 s (FEV1) and forced expiratory flow at 25–75% of vital capacity (FEF25–75) were significantly reduced postexposure by 5.9 and 11.8%, respectively, whereas forced vital capacity was not significantly changed. The average difference in maximum midexpiratory flow rates at 50% vital capacity on air and HeO2 was significantly reduced postexposure by 18%. Raw and CO diffusing capacity were not changed postexposure. The relatively large change in FEF25–75 compared with FEV1, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow. Postexposure pulmonary function changes in one subject who convulsed at 3.0 h of exposure are compared with corresponding average changes in 12 subjects who did not convulse.


2019 ◽  
Vol 13 ◽  
pp. 117955651986228
Author(s):  
Selma Ben Fraj ◽  
Amira Miladi ◽  
Fatma Guezguez ◽  
Mohamed Ben Rejeb ◽  
Jihène Bouguila ◽  
...  

Purpose: Several studies raised the effects of Ramadan fasting on healthy adults spirometric data, but none was performed in children. The aim of this study was to compare the spirometric data of a group of faster adolescents (n = 26) with an age-matched non-faster one (n = 10). Methods: This comparative quasi-experimental study, including 36 healthy males aged 12 to 15 years, was conducted during the summer 2015 (Ramadan: June 18 to July 16). Three sessions (Before-Ramadan [Before-R], Mid-Ramadan [Mid-R], After-Ramadan [After-R]) were selected for spirometry measurements. Spirometry was performed around 5.5 to 3.5 h before sunset and the spirometric data were expressed as percentages of local spirometric norms. Results: The two groups of fasters and non-fasters had similar ages and weights (13.35 ± 0.79 vs 12.96 ± 0.45 years, 46.8 ± 9.2 vs 41.7 ± 12.6 kg, respectively). There was no effect of Ramadan fasting on forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, peak expiratory flow, and maximal mid-expiratory flow. For example, during the Before-R, Mid-R, and After-R sessions, there was no significant difference between the fasters and non-fasters mean FVC (101 ± 11 vs 99 ± 14, 101 ± 12 vs 102 ± 14, 103 ± 11 vs 104 ± 13, respectively) or FEV1 (101 ± 13 vs 96 ± 16, 98 ± 11 vs 97 ± 16, 101 ± 10 vs 98 ± 16, respectively). Conclusions: Ramadan fasting had no interaction effect with the spirometric data of Tunisian healthy male adolescents.


Sign in / Sign up

Export Citation Format

Share Document