scholarly journals Virus-Induced Tumorigenesis and IFN System

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 994
Author(s):  
Marco Iuliano ◽  
Giorgio Mangino ◽  
Maria Vincenza Chiantore ◽  
Paola Di Di Bonito ◽  
Paolo Rosa ◽  
...  

Oncogenic viruses favor the development of tumors in mammals by persistent infection and specific cellular pathways modifications by deregulating cell proliferation and inhibiting apoptosis. They counteract the cellular antiviral defense through viral proteins as well as specific cellular effectors involved in virus-induced tumorigenesis. Type I interferons (IFNs) are a family of cytokines critical not only for viral interference but also for their broad range of properties that go beyond the antiviral action. In fact, they can inhibit cell proliferation and modulate differentiation, apoptosis, and migration. However, their principal role is to regulate the development and activity of most effector cells of the innate and adaptive immune responses. Various are the mechanisms by which IFNs exert their effects on immune cells. They can act directly, through IFN receptor triggering, or indirectly by the induction of chemokines, the secretion of further cytokines, or by the stimulation of cells useful for the activation of particular immune cells. All the properties of IFNs are crucial in the host defense against viruses and bacteria, as well as in the immune surveillance against tumors. IFNs may be affected by and, in turn, affect signaling pathways to mediate anti-proliferative and antiviral responses in virus-induced tumorigenic context. New data on cellular and viral microRNAs (miRNAs) machinery, as well as cellular communication and microenvironment modification via classical secretion mechanisms and extracellular vesicles-mediated delivery are reported. Recent research is reviewed on the tumorigenesis induced by specific viruses with RNA or DNA genome, belonging to different families (i.e., HPV, HTLV-1, MCPyV, JCPyV, Herpesviruses, HBV, HCV) and the IFN system involvement.

2021 ◽  
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Epigenetic regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial–like cell line Xela DS2 in response to poly(I:C) – an analogue of double-stranded viral RNA and inducer of type I interferons – or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. We sequenced small RNA libraries generated from untreated, poly(I:C)–treated, and FV3–infected cells. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty–five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS–STING, RIG–I/MDA–5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF–κB–induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs, and sheds light on microRNA–mediated mechanisms of immunoevasion by FV3.


2010 ◽  
Vol 42 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Yongming Sang ◽  
Raymond R. R. Rowland ◽  
Richard A. Hesse ◽  
Frank Blecha

Type I interferons (IFNs) are central to innate and adaptive immunity, and many have unique developmental and physiological functions. However, in most species, only two subtypes, IFN-α and IFN-β, have been well studied. Because of the increasing importance of zoonotic viral diseases and the use of pigs to address human research questions, it is important to know the complete repertoire and activity of porcine type I IFNs. Here we show that porcine type I IFNs comprise at least 39 functional genes distributed along draft genomic sequences of chromosomes 1 and 10. These functional IFN genes are classified into 17 IFN-α subtypes, 11 IFN-δ subtypes, 7 IFN-ω subtypes, and single-subtype subclasses of IFN-αω, IFN-β, IFN-ε, and IFN-κ. We found that porcine type I IFNs have diverse expression profiles and antiviral activities against porcine reproductive and respiratory syndrome virus (PRRSV) and vesicular stomatitis virus (VSV), with activity ranging from 0 to >105 U·ng−1·ml−1. Whereas most IFN-α subtypes retained the greatest antiviral activity against both PRRSV and VSV in porcine and MARC-145 cells, some IFN-δ and IFN-ω subtypes, IFN-β, and IFN-αω differed in their antiviral activity based on target cells and viruses. Several IFNs, including IFN-α7/11, IFN-δ2/7, and IFN-ω4, exhibited minimal or no antiviral activity in the tested target cell-virus systems. Thus comparative studies showed that antiviral activity of porcine type I IFNs is virus- and cell-dependent, and IFN-αs are positively correlated with induction of MxA, an IFN-stimulated gene. Collectively, these data provide fundamental genomic information for porcine type I IFNs, information that is necessary for understanding porcine physiological and antiviral responses.


2010 ◽  
Vol 70 (7) ◽  
pp. 2595-2603 ◽  
Author(s):  
Arnold I. Chin ◽  
Andrea K. Miyahira ◽  
Anthony Covarrubias ◽  
Juli Teague ◽  
Beichu Guo ◽  
...  

2010 ◽  
Vol 30 (10) ◽  
pp. 2424-2436 ◽  
Author(s):  
He-Xin Shi ◽  
Kai Yang ◽  
Xing Liu ◽  
Xin-Yi Liu ◽  
Bo Wei ◽  
...  

ABSTRACT Virus infection induces host antiviral responses, including induction of type I interferons. Transcription factor interferon regulatory factor 3 (IRF3) plays a pivotal role and is tightly regulated in this process. Here, we identify HERC5 (HECT domain and RLD 5) as a specific binding protein of IRF3 by immunoprecipitation. Ectopic expression or knockdown of HERC5 could, respectively, enhance or impair IRF3-mediated gene expression. Mechanistically, HERC5 catalyzes the conjugation of ubiquitin-like protein ISG15 onto IRF3 (Lys193, -360, and -366), thus attenuating the interaction between Pin1 and IRF3, resulting in sustained IRF3 activation. In contrast to results for wild-type IRF3, the mutant IRF3(K193,360,366R) interacts tightly with Pin1, is highly polyubiquitinated, and becomes less stable upon Sendai virus (SeV) infection. Consistently, host antiviral responses are obviously boosted or crippled in the presence or absence of HERC5, respectively. Collectively, this study characterizes HERC5 as a positive regulator of innate antiviral responses. It sustains IRF3 activation via a novel posttranslational modification, ISGylation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jintao Zhang ◽  
Chunyuan Zhao ◽  
Wei Zhao

The global expansion of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as one of the greatest public health challenges and imposes a great threat to human health. Innate immunity plays vital roles in eliminating viruses through initiating type I interferons (IFNs)-dependent antiviral responses and inducing inflammation. Therefore, optimal activation of innate immunity and balanced type I IFN responses and inflammation are beneficial for efficient elimination of invading viruses. However, SARS-CoV-2 manipulates the host’s innate immune system by multiple mechanisms, leading to aberrant type I IFN responses and excessive inflammation. In this review, we will emphasize the recent advances in the understanding of the crosstalk between host innate immunity and SARS-CoV-2 to explain the imbalance between inflammation and type I IFN responses caused by viral infection, and explore potential therapeutic targets for COVID-19.


FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 2058-2083
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Post-transcriptional regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial-like cell line Xela DS2 in response to poly(I:C)—an analogue of viral double-stranded RNA and inducer of type I interferons—or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. Small RNA libraries generated from untreated, poly(I:C)-treated, and FV3-infected cells were sequenced. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty-five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS-STING, RIG-I/MDA-5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF-ĸB-induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs and sheds light on microRNA-mediated mechanisms of immunoevasion by FV3.


2012 ◽  
Vol 209 (11) ◽  
pp. 1969-1983 ◽  
Author(s):  
Rebecca L. Brunette ◽  
Janet M. Young ◽  
Deborah G. Whitley ◽  
Igor E. Brodsky ◽  
Harmit S. Malik ◽  
...  

Innate immune detection of nucleic acids is important for initiation of antiviral responses. Detection of intracellular DNA activates STING-dependent type I interferons (IFNs) and the ASC-dependent inflammasome. Certain members of the AIM2-like receptor (ALR) gene family contribute to each of these pathways, but most ALRs remain uncharacterized. Here, we identify five novel murine ALRs and perform a phylogenetic analysis of mammalian ALRs, revealing a remarkable diversification of these receptors among mammals. We characterize the expression, localization, and functions of the murine and human ALRs and identify novel activators of STING-dependent IFNs and the ASC-dependent inflammasome. These findings validate ALRs as key activators of the antiviral response and provide an evolutionary and functional framework for understanding their roles in innate immunity.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Le Yu ◽  
Pengda Liu

AbstractSensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2′3′-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.


2020 ◽  
Author(s):  
Arinjay Banerjee ◽  
Nader El-Sayes ◽  
Patrick Budylowski ◽  
Daniel Richard ◽  
Hassaan Maan ◽  
...  

SUMMARYType I interferons (IFNs) are our first line of defence against a virus. Protein over-expression studies have suggested the ability of SARS-CoV-2 proteins to block IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wildtype SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are lacking. Here we demonstrate that SARS-CoV-2 infection induces a mild type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Our data demonstrate that SARS-CoV-2 is not adept in blocking type I IFN responses and provide support for ongoing IFN clinical trials.


Sign in / Sign up

Export Citation Format

Share Document