scholarly journals Extensive evolutionary and functional diversity among mammalian AIM2-like receptors

2012 ◽  
Vol 209 (11) ◽  
pp. 1969-1983 ◽  
Author(s):  
Rebecca L. Brunette ◽  
Janet M. Young ◽  
Deborah G. Whitley ◽  
Igor E. Brodsky ◽  
Harmit S. Malik ◽  
...  

Innate immune detection of nucleic acids is important for initiation of antiviral responses. Detection of intracellular DNA activates STING-dependent type I interferons (IFNs) and the ASC-dependent inflammasome. Certain members of the AIM2-like receptor (ALR) gene family contribute to each of these pathways, but most ALRs remain uncharacterized. Here, we identify five novel murine ALRs and perform a phylogenetic analysis of mammalian ALRs, revealing a remarkable diversification of these receptors among mammals. We characterize the expression, localization, and functions of the murine and human ALRs and identify novel activators of STING-dependent IFNs and the ASC-dependent inflammasome. These findings validate ALRs as key activators of the antiviral response and provide an evolutionary and functional framework for understanding their roles in innate immunity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jintao Zhang ◽  
Chunyuan Zhao ◽  
Wei Zhao

The global expansion of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as one of the greatest public health challenges and imposes a great threat to human health. Innate immunity plays vital roles in eliminating viruses through initiating type I interferons (IFNs)-dependent antiviral responses and inducing inflammation. Therefore, optimal activation of innate immunity and balanced type I IFN responses and inflammation are beneficial for efficient elimination of invading viruses. However, SARS-CoV-2 manipulates the host’s innate immune system by multiple mechanisms, leading to aberrant type I IFN responses and excessive inflammation. In this review, we will emphasize the recent advances in the understanding of the crosstalk between host innate immunity and SARS-CoV-2 to explain the imbalance between inflammation and type I IFN responses caused by viral infection, and explore potential therapeutic targets for COVID-19.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Rongzhao Zhang ◽  
Zhixin Li ◽  
Yan-Dong Tang ◽  
Chenhe Su ◽  
Chunfu Zheng

AbstractInnate immunity is the first line of host defense against viral infection. After invading into the cells, pathogen-associated-molecular-patterns derived from viruses are recognized by pattern recognition receptors to activate the downstream signaling pathways to induce the production of type I interferons (IFN-I) and inflammatory cytokines, which play critical functions in the host antiviral innate immune responses. Guanylate-binding proteins (GBPs) are IFN-inducible antiviral effectors belonging to the guanosine triphosphatases family. In addition to exerting direct antiviral functions against certain viruses, a few GBPs also exhibit regulatory roles on the host antiviral innate immunity. However, our understanding of the underlying molecular mechanisms of GBPs' roles in viral infection and host antiviral innate immune signaling is still very limited. Therefore, here we present an updated overview of the functions of GBPs during viral infection and in antiviral innate immunity, and highlight discrepancies in reported findings and current challenges for future studies, which will advance our understanding of the functions of GBPs and provide a scientific and theoretical basis for the regulation of antiviral innate immunity.


Author(s):  
Carole Drajac ◽  
Daphné Laubreton ◽  
Quentin Marquant ◽  
Claire Chottin ◽  
Cécile Ferret ◽  
...  

AbstractRespiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.


2014 ◽  
Vol 88 (14) ◽  
pp. 7987-7997 ◽  
Author(s):  
Jun Feng ◽  
Paul D. De Jesus ◽  
Victoria Su ◽  
Stephanie Han ◽  
Danyang Gong ◽  
...  

ABSTRACTDetection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3.IMPORTANCEThe innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sundararaj Stanleyraj Jeremiah ◽  
Kei Miyakawa ◽  
Satoko Matsunaga ◽  
Mayuko Nishi ◽  
Ayumi Kudoh ◽  
...  

Type-I interferons (IFN-I) are the innate immune system’s principal defense against viral infections. Human immunodeficiency virus-1 (HIV-1) has evolved several ways to suppress or evade the host’s innate immunity in order to survive and replicate to sustain infection. Suppression of IFN-I is one among the multiple escape strategies used by HIV-1 to prevent its clearance. HIV-1 protease which helps in viral maturation has also been observed to cleave host cellular protein kinases. In this study we performed a comprehensive screening of a human kinase library using AlphaScreen assay and identified that TANK binding kinase-1 (TBK1) was cleaved by HIV-1 protease (PR). We demonstrate that PR cleaved TBK1 fails to phosphorylate IFN regulatory factor 3 (IRF3), thereby reducing the IFN-I promoter activity and further reveal that the PR mediated suppression of IFN-I could be counteracted by protease inhibitors (PI) in vitro. We have also revealed that mutations of HIV-1 PR that confer drug resistance to PIs reduce the enzyme’s ability to cleave TBK1. The findings of this study unearth a direct link between HIV-1 PR activity and evasion of innate immunity by the virus, the possible physiological relevance of which warrants to be determined.


2021 ◽  
Vol 15 ◽  
Author(s):  
Omar Mossad ◽  
Thomas Blank

The immune system is crucial for defending against various invaders, such as pathogens, cancer cells or misfolded proteins. With increasing age, the diminishing immune response, known as immunosenescence, becomes evident. Concomitantly, some diseases like infections, autoimmune diseases, chronic inflammatory diseases and cancer, accumulate with age. Different cell types are part of the innate immunity response and produce soluble factors, cytokines, chemokines, and type I interferons. Improper maturation of innate immune cells or their dysfunction have been linked to numerous age-related diseases. In parallel to the occurrence of the many functional facets of the immune response, a symbiotic microbiota had been acquired. For the relevant and situation-dependent function of the immune system the microbiome plays an essential role because it fine-tunes the immune system and its responses during life. Nevertheless, how the age-related alterations in the microbiota are reflected in the innate immune system, is still poorly understood. With this review, we provide an up-to-date overview on our present understanding of the gut microbiota effects on innate immunity, with a particular emphasis on aging-associated changes in the gut microbiota and the implications for the brain innate immune response.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


Blood ◽  
2013 ◽  
Vol 122 (15) ◽  
pp. 2591-2599 ◽  
Author(s):  
Simon Heidegger ◽  
David Anz ◽  
Nicolas Stephan ◽  
Bernadette Bohn ◽  
Tina Herbst ◽  
...  

Key Points Systemic virus infection leads to rapid disruption of the Peyer’s patches but not of peripheral lymph nodes. Virus-associated innate immune activation and type I IFN release blocks trafficking of B cells to Peyer’s patches.


2005 ◽  
Vol 42 (8) ◽  
pp. 869-877 ◽  
Author(s):  
Peter L Smith ◽  
Giovanna Lombardi ◽  
Graham R Foster

2021 ◽  
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Epigenetic regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial–like cell line Xela DS2 in response to poly(I:C) – an analogue of double-stranded viral RNA and inducer of type I interferons – or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. We sequenced small RNA libraries generated from untreated, poly(I:C)–treated, and FV3–infected cells. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty–five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS–STING, RIG–I/MDA–5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF–κB–induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs, and sheds light on microRNA–mediated mechanisms of immunoevasion by FV3.


Sign in / Sign up

Export Citation Format

Share Document