scholarly journals Performance Profile among Age Categories in Young Cyclists

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1196
Author(s):  
Cristian Marín-Pagán ◽  
Stéphane Dufour ◽  
Tomás T. Freitas ◽  
Pedro E. Alcaraz

Endurance profile assessment is of major interest to evaluate the cyclist’s performance potential. In this regard, maximal oxygen uptake and functional threshold power are useful functional parameters to determine metabolic training zones (ventilatory threshold). The aim of this study was to evaluate and compare the physiological profile of different road cyclist age categories (Youth, Junior, and Under-23) to obtain the performance requirements. Sixty-one competitive road cyclists (15–22 years) performed a maximal incremental test on a bike in order to determine functional parameters (maximal fat oxidation zone, ventilatory thresholds, maximal oxygen uptake, and functional threshold power) and metabolic training zones. The results suggest major differences, with the Youth group showing clear changes in all metabolic zones except in fat oxidation. The main differences between Under-23 vs. Junior groups were observed in maximal relative power output (Under-23: 6.70 W·Kg−1; Junior: 6.17 W·Kg−1) and relative functional threshold power (Under-23: 4.91 W·Kg−1; Junior: 4.48 W·Kg−1). The Youth group physiological profile is clearly different to the other age categories. Some parameters normalized to body weight (maximal oxygen consumption, load and functional threshold power) could be interesting to predict a sporting career during the Junior and Under-23 stages.

Author(s):  
Hanapi M. Johari ◽  
Brinnell A. Caszo ◽  
Victor F. Knight ◽  
Steven A. Lumley ◽  
Aminuddin K. Abdul Hamid ◽  
...  

2000 ◽  
Vol 25 (2) ◽  
pp. 102-113 ◽  
Author(s):  
Olivier Hue ◽  
Daniel Le Gallais ◽  
Didier Chollet ◽  
Christian Préfaut

The aim of this study was to determine the physiological profile of young triathletes who began triathlon competition as their first sport. Twenty-nine male competitive triathletes (23 regionally and nationally ranked triathletes and 6 elite, internationally ranked triathletes) performed two tests, one on a cycle ergometer [Formula: see text] and one on a treadmill [Formula: see text] Results showed (a) no difference between CE [Formula: see text] and TM [Formula: see text] in the triathletes (69.1 ± 7.2 vs. 70.2 ± 6.2 mL•kg−1•min−1, respectively), (b) values of CE [Formula: see text] and TM [Formula: see text] in elite triathletes (75.9 + 5.2 and 78.5 ± 3.6 mL•kg−1•min−1, respectively) that were comparable to those reported in elite single-sport athletes in these specialities, and (c) although the ventilatory threshold (Thvent) was similar in CE and TM. TM Thvent was consistently lower for triathletes than TM Thvent usually reported for runners. Key Words: triathlon, cross-training adaptations, elite triathletes


Sports ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 217 ◽  
Author(s):  
Arne Sørensen ◽  
Tore Kristian Aune ◽  
Vegar Rangul ◽  
Terje Dalen

Cycling is a popular sport, and evaluation of the validity of tests to predict performance in competitions is important for athletes and coaches. Similarity between performance in sprints in mass-start bike races and in the laboratory is found, but, to our knowledge, no studies have investigated the relationship between laboratory measurements of maximal oxygen uptake (VO2max) and functional threshold power (FTP) with performance in official mass-start competitions. The purpose of this study was to evaluate the validity of a 20 min FTP test and VO2max as predictors for performance in an official mountain bike competition. Eleven moderately trained male cyclists at a local level participated in this study (age: 43 ± 5.1 years; height: 183.4 ± 5.4 m; weight: 84.4 ± 8.7 kg; body mass index: 25.1 ± 2.1). All subjects performed a 20 min FTP test in the laboratory to measure the mean power. In addition, the subjects completed an incremental test to exhaustion to determine VO2max. These two laboratory tests were analyzed together with the results from a 47 km mass-start mountain bike race, with a total elevation of 851 m. A significant relationship was found between the mean relative power (W/kg) for the 20 min FTP test and performance time in the race (r = −0.74, P < 0.01). No significant correlation was found between VO2max and cycling performance for these subjects (r = −0.37). These findings indicate that a 20 min FTP test is a more valid test for prediction of performance in mass-start bike races than a VO2max test for moderately trained cyclists.


2019 ◽  
Vol 119 (10) ◽  
pp. 2391-2399 ◽  
Author(s):  
Mark Waldron ◽  
O. Jeffries ◽  
J. Tallent ◽  
S. Patterson ◽  
V. Nevola

Abstract Purpose This study investigated the effects of a 10-day heat acclimation (HA) programme on the time course of changes in thermoneutral maximal oxygen uptake ($$\dot{V}$$ V ˙ O2max) during and up to 10 days post-HA. Methods Twenty-two male cyclists were assigned to a HA or control (Con) training group following baseline ramp tests of thermoneutral $$\dot{V}$$ V ˙ O2max. Ten days of fixed-intensity (50% baseline $$\dot{V}$$ V ˙ O2max) indoor cycling was performed in either ~ 38.0 °C (HA) or ~ 20 °C (Con). $$\dot{V}$$ V ˙ O2max was re-tested on HA days 5, 10 and post-HA days 1, 2, 3, 4, 5 and 10. Results $$\dot{V}$$ V ˙ O2max initially declined across time in both groups during training (P < 0.05), before increasing in the post-HA period in both groups (P < 0.05). However, $$\dot{V}$$ V ˙ O2max was higher than control by post-HA day 4 in the HA group (P = 0.046). Conclusions The non-linear time course of $$\dot{V}$$ V ˙ O2max adaptation suggests that post-testing should be performed 96-h post-training to identify the maximal change for most individuals. In preparation for training or testing, athletes can augment their aerobic power in thermoneutral environments by performing 10 days HA, but the full effects will manifest at varying stages of the post-HA period.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Abdoulaye Ba ◽  
Fabienne Brégeon ◽  
Stéphane Delliaux ◽  
Fallou Cissé ◽  
Abdoulaye Samb ◽  
...  

Cardiopulmonary response to unloaded cycling may be related to higher workloads. This was assessed in male subjects: 18 healthy sedentary subjects (controls), 14 hypoxemic patients with chronic obstructive pulmonary disease (COPD), and 31 overweight individuals (twelve were hypoxemic). They underwent an incremental exercise up to the maximal oxygen uptake (VO2max), preceded by a 2 min unloaded cycling period. Oxygen uptake (VO2), heart rate (HR), minute ventilation (VE), and respiratory frequency (fR) were averaged every 10 s. At the end of unloaded cycling period, HR increase was significantly accentuated in COPD and hypoxemic overweight subjects (resp.,+14±2and+13±1.5 min−1, compared to+7.5±1.5 min−1in normoxemic overweight subjects and+8±1.8 min−1in controls). The fR increase was accentuated in all overweight subjects (hypoxemic:+4.5±0.8; normoxemic:+3.9±0.7 min−1) compared to controls (+2.5±0.8 min−1) and COPDs (+2.0±0.7 min−1). The plateau VE increase during unloaded cycling was positively correlated with VE values measured at the ventilatory threshold and VO2max. Measurement of ventilation during unloaded cycling may serve to predict the ventilatory performance of COPD patients and overweight subjects during an exercise rehabilitation program.


2011 ◽  
Vol 36 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Xavier Chenevière ◽  
Fabio Borrani ◽  
David Sangsue ◽  
Boris Gojanovic ◽  
Davide Malatesta

Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM−1·min−1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.


2006 ◽  
Vol 100 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Julien V. Brugniaux ◽  
Laurent Schmitt ◽  
Paul Robach ◽  
Gérard Nicolet ◽  
Jean-Pierre Fouillot ◽  
...  

The efficiency of “living high, training low” (LHTL) remains controversial, despite its wide utilization. This study aimed to verify whether maximal and/or submaximal aerobic performance were modified by LHTL and whether these effects persist for 15 days after returning to normoxia. Last, we tried to elucidate whether the mechanisms involved were only related to changes in oxygen-carrying capacity. Eleven elite middle-distance runners were tested before (Pre), at the end (Post1), and 15 days after the end (Post2) of an 18-day LHTL session. Hypoxic group (LHTL, n = 5) spent 14 h/day in hypoxia (6 nights at 2,500 m and 12 nights at 3,000 m), whereas the control group (CON, n = 6) slept in normoxia (1,200 m). Both LHTL and CON trained at 1,200 m. Maximal oxygen uptake and maximal aerobic power were improved at Post1 and Post2 for LHTL only (+7.1 and +3.4% for maximal oxygen uptake, +8.4 and +4.7% for maximal aerobic power, respectively). Similarly oxygen uptake and ventilation at ventilatory threshold increased in LHTL only (+18.1 and +12.2% at Post1, +15.9 and +15.4% at Post2, respectively). Heart rate during a 10-min run at 19.5 km/h decreased for LHTL at Post2 (−4.4%). Despite the stimulation of erythropoiesis in LHTL shown by the 27.4% increase in serum transferrin receptor and the 10.1% increase in total hemoglobin mass, red cell volume was not significantly increased at Post1 (+9.2%, not significant). Therefore, both maximal and submaximal aerobic performance in elite runners were increased by LHTL mainly linked to an improvement in oxygen transport in early return to normoxia and probably to other process at Post2.


Sign in / Sign up

Export Citation Format

Share Document