scholarly journals Rapid and Direct Action of Lipopolysaccharide (LPS) on Skeletal Muscle of Larval Drosophila

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1235
Author(s):  
Rachel Potter ◽  
Alexis Meade ◽  
Samuel Potter ◽  
Robin L. Cooper

The endotoxin lipopolysaccharide (LPS) from Gram-negative bacteria exerts a direct and rapid effect on tissues. While most attention is given to the downstream actions of the immune system in response to LPS, this study focuses on the direct actions of LPS on skeletal muscle in Drosophila melanogaster. It was noted in earlier studies that the membrane potential rapidly hyperpolarizes in a dose-dependent manner with exposure to LPS from Pseudomonas aeruginosa and Serratia marcescens. The response is transitory while exposed to LPS, and the effect does not appear to be due to calcium-activated potassium channels, activated nitric oxide synthase (NOS), or the opening of Cl− channels. The purpose of this study was to further investigate the mechanism of the hyperpolarization of the larval Drosophila muscle due to exposure of LPS using several different experimental paradigms. It appears this response is unlikely related to activation of the Na-K pump or Ca2+ influx. The unknown activation of a K+ efflux could be responsible. This will be an important factor to consider in treatments of bacterial septicemia and cellular energy demands.

2020 ◽  
Vol 85 (4) ◽  
pp. 882-889
Author(s):  
Yan Liang ◽  
Shijiao Zha ◽  
Masanobu Tentaku ◽  
Takasi Okimura ◽  
Zedong Jiang ◽  
...  

ABSTRACT In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Guili Bao ◽  
Yinglong Zhang ◽  
Xiaoguang Yang

AbstractIn this study, lemon peel flavonoids (LPF) were administered to investigate its effect on the anti-fatigue and antioxidant capacity of mice that undergo exercise until exhaustion. LPF (88.36 min in LPFH group mice) significantly increased the exhaustion swimming time compare to the untreated mice (40.36 min), increased the liver glycogen and free fatty acid content in mice and reduce lactic acid and BUN content in a dose-dependent manner. As the concentration of lemon peel flavonoids increased, the serum creatine kinase, aspartate aminotransferase, and alanine aminotransferase levels of mice gradually decreased. LPF increases superoxide dismutase (SOD) and catalase (CAT) levels in mice and reduces malondialdehyde levels in a dose-dependent manner. And LPF raises hepatic tissue SOD, CAT activities and reduces skeletal muscle tissue iNOS, TNF-α levels of mice compared to the control group. LPF also enhanced the expression of copper/zinc-superoxide dismutase (Cu/Zn-SOD), manganese-superoxide dismutase (Mn-SOD), and CAT mRNA in mouse liver tissue. LPF also enhanced the expression of alanine/serine/cysteine/threonine transporter 1 (ASCT1) mRNA and attenuate the expression of syncytin-1, inducible nitric oxide synthase (iNOS), and tumor necrosis factor (TNF)-α in mouse skeletal muscle. According to high-performance liquid chromatography (HPLC) analysis, it was found that LPF contains flavonoids such as rutin, astragalin, isomangiferin, naringin, and quercetin. Our experimental data show that LPF has good anti-fatigue effects and anti-oxidation ability. In summary, LPF has high prospects to be developed and added to nutritional supplements.


2001 ◽  
Vol 280 (5) ◽  
pp. E677-E684 ◽  
Author(s):  
Nicolas Musi ◽  
Tatsuya Hayashi ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Lee A. Witters ◽  
...  

The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPKα1 and AMPKα2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-β-d-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3- O-methyl-d-glucose (3-MG) uptake. There were dose-dependent increases in AMPKα2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPKα1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPKα2 activity and 3-MG uptake but had little effect on AMPKα1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPKα1 and -α2 activity and 3-MG uptake. Although the AMPKα1 and -α2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPKα2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.


Author(s):  
Maria Fernanda Romo-García ◽  
Martín Zapata-Zuñiga ◽  
José Antonio Enciso-Moreno ◽  
Julio Enrique Castañeda-Delgado

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease that can lead to irreversible disability. It affects women in a higher proportion than men (3:1 cases). Several reports suggest a link between female sexual hormones (estrogens) and RA features. It’s been described that biological processes where basal estrogen levels are altered like in menstruation, pregnancy, and menopause modifies RA onset, flare, disease severity, and inflammation. Estrogens have a direct action upon the immune system though ERα and ERβ receptors, which have distinct affinity to estrogen concentrations and modifications and have effects upon RA in a dose and receptor dependent manner. The studies focused on dose dependent response at experimental settings reveal a wide (from 25 pg/L to several μg/L) and even contradictory spectrum of effects in patients and cells. This chapter summarizes the contributions and effects of estrogens in RA physiopathology, clinical features, and discusses the possible contributions of estrogen administration and concentration of hormone replacement therapy (HRT) to improve the quality of life and reduce the symptoms of RA patients based on the knowledge of the biology of these hormones.


2005 ◽  
Vol 289 (1) ◽  
pp. E75-E81 ◽  
Author(s):  
Robin P. Peeters ◽  
Annewieke W. van den Beld ◽  
Hayat Attalki ◽  
Hans van Toor ◽  
Yolanda B. de Rijke ◽  
...  

Type II deiodinase (D2) is important in the regulation of local thyroid hormone bioactivity in certain tissues. D2 in skeletal muscle may also play a role in serum triiodothyronine (T3) production. In this study, we identified a polymorphism in the 5′-UTR of the D2 gene (D2-ORFa-Gly3Asp). We investigated the association of D2-ORFa-Gly3Asp, and of the previously identified D2-Thr92Ala polymorphism, with serum iodothyronine levels. D2-ORFa-Gly3Asp was identified by sequencing the 5′-UTR of 15 randomly selected individuals. Genotypes for D2-ORFa-Gly3Asp were determined in 156 healthy blood donors (age 46.3 ± 12.2 yr) and 349 ambulant elderly men (age 77.7 ± 3.5 yr) and related to serum iodothyronine and TSH levels. D2-ORFa-Asp3had an allele frequency of 33.9% in blood bank donors and was associated with serum thyroxine (T4; Gly/Gly vs. Gly/Asp vs. Asp/Asp = 7.06 ± 0.14 vs. 6.74 ± 0.15 vs. 6.29 ± 0.27 μg/dl, P = 0.01), free T4(1.22 ± 0.02 vs. 1.16 ± 0.02 vs. 1.06 ± 0.04 ng/dl, P = 0.001), reverse T3( P = 0.01), and T3/T4ratio ( P = 0.002) in a dose-dependent manner, but not with serum T3( P = 0.59). In elderly men, D2-ORFa-Asp3had a similar frequency but was not associated with serum iodothyronine levels. This new polymorphism in the 5′-UTR of D2 is associated with iodothyronine levels in blood donors but not in elderly men. We hypothesize that this might be explained by the decline in skeletal muscle size during aging, resulting in a relative decrease in the contribution of D2 to serum T3production.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 209-209 ◽  
Author(s):  
Kalpna Gupta ◽  
Chunsheng Chen ◽  
Gerald A. Lutty ◽  
Robert P. Hebbel

Abstract Proliferative retinopathy is a complication of sickle cell disease (SCD). Promotion of angiogenesis by opioids (Cancer Res62: 4491, 2002) suggests that opioid analgesics used to treat pain may exaggerate retinopathy in patients with SCD. To examine the hypothesis that morphine augments retinopathy, we used sickle mice with transgenes for human α and βS globin (NY1DD model) and their wild type (WT) C57/BL6 controls. Simulating the analgesic doses used in humans, we injected morphine subcutaneously (50 mg / day / 70 Kg with 10 mg increments every 2 weeks and / or equimolar amount of naloxone) for 6 to 15 months into 9 – 11 months old mice. Retinal vasculature was visualized with darkfield illumination using adenosine diphosphatese reaction. Morphine induced neovascularization, corkscrew formation resembling microangiopathy in human, arterio-venous anastomoses and several vascular tufts in the inner 1/3 and whole retina after 10 and 15 months of treatment, respectively in all NY1DD but not in WT mice. Only 1/5 or 2/7 PBS-treated NY1DD mice showed early neovascular changes at 20 (treated for 10 mo) or 26 (treated for 15 mo) months of age, respectively. Retinopathy scores by ICROP system used in neonatal intensive care units for abnormal vessels, blood vessel tortuosity and tufts in NY1DD mice were: 10 mo treatment, PBS, 1.5±0.5; morphine, 10±0.7 (p<0.0001 vs PBS); morphine + naloxone, 4±1; naloxone, 3.8±1.2 and 15 mo treatment, PBS, 5.9±2 and morphine, 13±0.5 (p<0.003 vs PBS). Naloxone significantly inhibited (p<0.005, morphine vs morphine +naloxone) morphine-induced retinopathy, suggesting an opioid receptor-mediated mechanism. To elucidate the mechanism of morphine-induced retinopathy we isolated retinal endothelial cells (REC) by panning with anti-CD31 from WT and NY1DD mice. Similar to VEGF induced proliferation and survival, morphine stimulated 5–6 fold proliferation and increased survival by about 75% in both WT and NY1DD REC, in a dose dependent manner. Both VEGF164 and morphine stimulated time-dependent MAPK/ERK and STAT3 phosphorylation in WT REC. VEGF and morphine stimulate nitric oxide synthase pathway and stimulate angiogenesis. This raised the possibility of a cross-talk between VEGF receptor(s) and opioid receptor(s). We found that morphine stimulates the phosphorylation of VEGFR2/Flk1 in WT REC which co-immunoprecipitated with mu opioid receptor (MOR) using anti-MOR antibodies. Both, morphine- or VEGF-induced phospho STAT3 also co-immunoprecipitated with MOR, suggesting that activation of either MOR or Flk1 transactivates the other. Thus, addition of morphine to the VEGF replete microenvironment in SCD can have an exaggerating effect on the progression of retinopathy. Since patients with SCD receive opioids for long periods of time, we speculate that retinopathy in these patients may in part be due to opioid use.


1995 ◽  
Vol 20 (1) ◽  
pp. 112-124 ◽  
Author(s):  
Karl J. A. McCullagh ◽  
Arend Bonen

Biochemical studies were conducted to determine the location of a putative lactate transport protein in rat skeletal muscle plasma membranes (PM). PM (50-100 μg protein) were incubated with [U-14C] L(+)-lactate, in the presence or absence of unlabeled monocarboxylates or potential inhibitors, after which proteins were separated by SDS-PAGE. Gel slices (2 mm) were cut and analyzed for14C. [U-14C] L(+)-lactate was bound to plasma membranes in the 30 to 40 kDa molecular mass range. Binding of [U-14C] L(+)-lactate was inhibited by N-ethylmaleimide, unlabeled L-lactate and pyruvate, and in a dose dependent manner by α-cyano-4-hydroxycinnamate (r = 0.995), but not by cytochalasin-B. The inhibition of [U-14C] L(+)-lactate binding was similar to the inhibition of lactate transport. Therefore the transport of L(+)-lactate across skeletal muscle plasma membranes involves a polypeptide of 30 to 40 kDa. Key words: transport, affinity labeling


1986 ◽  
Vol 234 (3) ◽  
pp. 527-535 ◽  
Author(s):  
R S Horn ◽  
E Lystad ◽  
A Adler ◽  
O Walaas

When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5′-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5′-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5′-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed.


Sign in / Sign up

Export Citation Format

Share Document