scholarly journals Development of a Novel Quinoline Derivative as a P-Glycoprotein Inhibitor to Reverse Multidrug Resistance in Cancer Cells

Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 75 ◽  
Author(s):  
Yuanyuan Zhou ◽  
Po-yee Chung ◽  
Jessica Yuen-wuen Ma ◽  
Alfred King-yin Lam ◽  
Simon Law ◽  
...  

Multidrug resistance (MDR) is one of conventional cancer chemotherapy’s limitations. Our group previously synthesized a series of quinoline-based compounds in an attempt to identify novel anticancer agents. With a molecular docking analysis, the novel compound 160a was predicted to target p-glycoprotein, an MDR candidate. The purpose of this study is to evaluate 160a’s MDR reversal effect and investigate the underlying mechanism at the molecular level. To investigate 160a’s inhibitory effect, we used a series of parental cancer cell lines (A549, LCC6, KYSE150, and MCF-7), the corresponding doxorubicin-resistant cell lines, an MTS cytotoxicity assay, an intracellular doxorubicin accumulation test, and multidrug resistance assays. The Compusyn program confirmed, with a combination index (CI) value greater than 1, that 160a combined with doxorubicin exerts a synergistic effect. Intracellular doxorubicin accumulation and transported calcein acetoxymethyl (AM) (a substrate for p-glycoprotein) were both increased when cancer cells with MDR were treated with compound 160a. We also showed that compound 160a’s MDR reversal effect can persist for at least 1 h. Taken together, these results suggest that the quinoline compound 160a possesses high potential to reverse MDR by inhibiting p-glycoprotein-mediated drug efflux in cancer cells with MDR.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1748 ◽  
Author(s):  
Elisabetta Teodori ◽  
Laura Braconi ◽  
Silvia Bua ◽  
Andrea Lapucci ◽  
Gianluca Bartolucci ◽  
...  

A new series of N,N-bis(alkanol)amine aryl diesters was synthesized and studied as dual P-glycoprotein (P-gp) and carbonic anhydrase XII inhibitors (CA XII). These hybrids should be able to synergistically overcome P-gp mediated multidrug resistance (MDR) in cancer cells. It was reported that the efflux activity of P-gp could be modulated by CA XII, as the pH reduction caused by CA XII inhibition produces a significant decrease in P-gp ATPase activity. The new compounds reported here feature both P-gp and CA XII binding moieties. These hybrids contain a N,N-bis(alkanol)amine diester scaffold found in P-glycoprotein ligands and a coumarin or benzene sulfonamide moiety to target CA XII. Many compounds displayed a dual activity against P-gp and CA XII being active in the Rhd 123 uptake test on K562/DOX cells and in the hCA XII inhibition test. On LoVo/DOX cells, that overexpress both P-gp and CA XII, some coumarin derivatives showed a high MDR reversal effect in Rhd 123 uptake and doxorubicin cytotoxicity enhancement tests. In particular, compounds 7 and 8 showed higher activity than verapamil and were more potent on LoVo/DOX than on K562/DOX cells overexpressing only P-gp. They can be considered as valuable candidates for selective P-gp/CA XII inhibition in MDR cancer cells.


1991 ◽  
Vol 98 (3) ◽  
pp. 317-322
Author(s):  
D.W. Shen ◽  
Y.G. Lu ◽  
K.V. Chin ◽  
I. Pastan ◽  
M.M. Gottesman

Multidrug resistance of human cancer cells may result from expression of P-glycoprotein, the product of the MRD1 gene, acting as an energy-dependent drug efflux pump. However, direct evidence that expression of the MDR1 gene contributes to the multidrug resistance of human liver carcinomas has not been established. In this study, we tested five cell lines derived from human hepatocellular carcinomas for sensitivity to a variety of drugs used widely as anticancer agents; these included vinblastine, doxorubicin, actinomycin D, mitomycin C, 5-fluorouracil, 6-mercaptopurine, melphalan, methotrexate, cis-platinum and etoposide (VP-16). All five hepatoma cell lines were resistant at different levels to these chemicals compared to human KB cells. Although it has been demonstrated that resistance to vinblastine, colchicine, doxorubicin and actinomycin D in human multidrug-resistant cells is associated with overexpression of P-glycoprotein, very little expression of P-glycoprotein was found in these human hepatoma cells. Neither verapamil nor quinidine, inhibitors of the drug efflux pump, were able to overcome multidrug resistance in hepatoma cells. These results indicate that the multidrug resistance phenotype in human hepatocellular carcinoma cells cannot be attributed to expression of the MDR1 gene, but that novel mechanisms may account for the resistance of these cancer cells.


2019 ◽  
Vol 18 (15) ◽  
pp. 2124-2130
Author(s):  
Amany Belal

Background: For further exploration of the promising pyrrolizine scaffold and in continuation of our previous work, that proved the potential anticancer activity of the hit compound I, a new series of pyrrolizines 2-5 and 7-9 were designed and synthesized. Methods: Structures of the new compounds were confirmed by IR, 1H-NMR, 13C-NMR and elemental analysis. Antitumor activity for the prepared compounds against human breast adenocarcinoma (MCF-7), liver (HEPG2) and colon (HCT116) cancer cell lines was evaluated using SRB assay method. Result: Compounds 2, 3 and 5 were the most potent on colon cancer cells, their IC50 values were less than 5 µM. Compounds 2, 3 and 8 were the most potent on liver cancer cells, their IC50 values were less than 10 µM. As for MCF7, compounds 2, 7, 8 and 9 were the most active with IC50 values less than 10 µM. We can conclude that combining pyrrolizine scaffold with urea gave abroad spectrum anticancer agent 2 against the three tested cell lines. Micronucleus assays showed that compounds 2, 3, 8 are mutagenic and can induce apoptosis. In addition, caspase-3 activation was evaluated and compound 2 showed increase in the level of caspase-3 (9 folds) followed by 3 (8.28 folds) then 8 (7.89 folds). Conclusion: The obtained results encourage considering these three compounds as novel anticancer prototypes.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. Mohana ◽  
M. Ganesan ◽  
N. Rajendra Prasad ◽  
D. Ananthakrishnan ◽  
D. Velmurugan

An amendment to this paper has been published and can be accessed via the original article.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 630
Author(s):  
Hawon Yoo ◽  
Seul-Ki Choi ◽  
Jaeok Lee ◽  
So Hyeon Park ◽  
You Na Park ◽  
...  

Relationships between heat shock protein 27 (HSP27) and cancer aggressiveness, metastasis, drug resistance, and poor patient outcomes in various cancer types including non-small cell lung cancer (NSCLC) were reported, and inhibition of HSP27 expression is suggested to be a possible strategy for cancer therapy. Unlike HSP90 or HSP70, HSP27 does not have an ATP-binding pocket, and no effective HSP27 inhibitors have been identified. Previously, NSCLC cancer cells were sensitized to radiation and chemotherapy when co-treated with small molecule HSP27 functional inhibitors such as zerumbone (ZER), SW15, and J2 that can induce abnormal cross-linked HSP27 dimer. In this study, cancer inhibition effects of NA49, a chromenone compound with better solubility, longer circulation time, and less toxicity than J2, were examined in combination with anticancer drugs such as cisplatin and gefitinib in NSCLC cell lines. When the cytotoxic drug cisplatin was treated in combination with NA49 in epidermal growth factor receptors (EGFRs) WT cell lines, sensitization was induced in an HSP27 expression-dependent manner. With gefitinib treatment, NA49 showed increased combination effects in both EGFR WT and Mut cell lines, also with HSP27 expression-dependent patterns. Moreover, NA49 induced sensitization in EGFR Mut cells with a secondary mutation of T790M when combined with gefitinib. Augmented tumor growth inhibition was shown with the combination of cisplatin or gefitinib and NA49 in nude mouse xenograft models. These results suggest the combination of HSP27 inhibitor NA49 and anticancer agents as a candidate for overcoming HSP27-mediated drug resistance in NSCLC patients.


2015 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Shang-Jin Peng ◽  
Jue-Wei Chen

<p class="Abstract">The present study investigates the effect of rubriflordilactone A on the viability and its underlying mechanism in gastric cancer cell lines (SNU-1 and SNU-5) and normal gastric epithelial cell line (GES‑1). Incubation of the gastric cancer and non cancer cell lines in acidic media led to reduction in the viability of the non cancer cells without any effect on cancer cells. Apoptosis in SNU-1 and SNU-5 cells was induced on exposure to rubriflordilactone A after 48 hours compared to the control cells (p&lt;0.01). The percentage of apoptosis in SNU-1 and SNU-5 cells on exposure to rubriflordilactone A was 79.3 ± 4.7 and 74.0 ± 5.1, respectively after 48 hours. Exposure of SNU-1 and SNU-5 cancer cell lines to rubriflordilactone A at a concentration of 10 μM in media with acidic pH decreased phosphorylation of ERK ½. The similar reduction was caused by ERK 1/2 phosphorylation inhibition, PD98059. Thus rubriflordilactone A reduces viability of gastric cancer cell lines by inducing apoptosis through the reduction of ERK 1/2 phosphorylation.</p><p> </p>


2020 ◽  
Vol 52 (11) ◽  
pp. 1202-1214
Author(s):  
Lejia Qiu ◽  
Zhaoxia Ma ◽  
Xiaoran Li ◽  
Yizhang Deng ◽  
Guangling Duan ◽  
...  

Abstract Gastric cancer is a common malignancy worldwide. The occurrence of multidrug resistance (MDR) is the major obstacle for effective gastric cancer chemotherapy. In this study, the in-depth molecular mechanism of the DJ-1-induced MDR in SGC7901 gastric cancer cells was investigated. The results showed that DJ-1 expression level was higher in MDR variant SGC7901/VCR cells than that in its parental SGC7901 cells. Moreover, DJ-1 overexpression conferred the MDR phenotype to SGC7901 cells, while DJ-1 knockdown in SGC7901/VCR cells induced re-sensitization to adriamycin, vincristine, cisplatin, and 5-fluorouracil. These results suggested that DJ-1 mediated the development of MDR in SGC7901 gastric cancer cells. Importantly, further data revealed that the activation of PI3k/Akt and Nrf2 signaling pathway were required for the DJ-1-induced MDR phenotype in SGC7901 gastric cancer cells. Meanwhile, we found that PI3k/Akt pathway was activated probably through DJ-1 directly binding to and negatively regulating PTEN, consequently resulting in Nrf2 phosphorylation and activation, and thereby inducing Nrf2-dependent P-glycoprotein (P-gp) and Bcl-2 expressions in the DJ-1-mediated MDR of SGC7901 gastric cancer cells. Overall, these results revealed that activating PTEN/PI3K/Akt/Nrf2 pathway and subsequently upregulating P-gp and Bcl-2 expression could be a critical mechanism by which DJ-1 mediates the development of MDR in SGC7901 gastric cancer cells. The new findings may be helpful for understanding the mechanisms of MDR in gastric cancer cells, prompting its further investigation as a molecular target to overcome MDR.


Sign in / Sign up

Export Citation Format

Share Document