scholarly journals Drug-Like Small Molecule HSP27 Functional Inhibitor Sensitizes Lung Cancer Cells to Gefitinib or Cisplatin by Inducing Altered Cross-Linked Hsp27 Dimers

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 630
Author(s):  
Hawon Yoo ◽  
Seul-Ki Choi ◽  
Jaeok Lee ◽  
So Hyeon Park ◽  
You Na Park ◽  
...  

Relationships between heat shock protein 27 (HSP27) and cancer aggressiveness, metastasis, drug resistance, and poor patient outcomes in various cancer types including non-small cell lung cancer (NSCLC) were reported, and inhibition of HSP27 expression is suggested to be a possible strategy for cancer therapy. Unlike HSP90 or HSP70, HSP27 does not have an ATP-binding pocket, and no effective HSP27 inhibitors have been identified. Previously, NSCLC cancer cells were sensitized to radiation and chemotherapy when co-treated with small molecule HSP27 functional inhibitors such as zerumbone (ZER), SW15, and J2 that can induce abnormal cross-linked HSP27 dimer. In this study, cancer inhibition effects of NA49, a chromenone compound with better solubility, longer circulation time, and less toxicity than J2, were examined in combination with anticancer drugs such as cisplatin and gefitinib in NSCLC cell lines. When the cytotoxic drug cisplatin was treated in combination with NA49 in epidermal growth factor receptors (EGFRs) WT cell lines, sensitization was induced in an HSP27 expression-dependent manner. With gefitinib treatment, NA49 showed increased combination effects in both EGFR WT and Mut cell lines, also with HSP27 expression-dependent patterns. Moreover, NA49 induced sensitization in EGFR Mut cells with a secondary mutation of T790M when combined with gefitinib. Augmented tumor growth inhibition was shown with the combination of cisplatin or gefitinib and NA49 in nude mouse xenograft models. These results suggest the combination of HSP27 inhibitor NA49 and anticancer agents as a candidate for overcoming HSP27-mediated drug resistance in NSCLC patients.

2018 ◽  
Vol 16 (9) ◽  
pp. 1465-1479 ◽  
Author(s):  
Sara R. Fedorka ◽  
Kevin So ◽  
Ayad A. Al-Hamashi ◽  
Ibtissam Gad ◽  
Ronit Shah ◽  
...  

In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species in an iron-dependent manner.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ning Wang ◽  
Chen Zhu ◽  
Ye Xu ◽  
Wenliang Qian ◽  
Min Zheng

Objective.Chemotherapy is the routine method for treating many cancers, but long-term treatment may result in developing resistance to the drugs. The aim of this study was to identify whether noncoding RNAs play a role in drug resistance and how they affect drug resistance.Materials and Methods.The expression levels of miR-221 in different lung cancer cell lines H226, H1299, and A549 were measured. H1299 and A549 cell lines were transfected to overexpress and downexpress miR-221, and cell viability and cell senescence were determined. The PTEN/Akt pathway was then examined by real-time polymerase chain reaction and Western blot analysis.Results. MiR-221 together with proteins MDR1 and ABCG2 was upregulated in Cisplatin-resistant A549 lung cancer cells. Anti-miR-221 inhibits proliferation and induces senescence in lung cancer cells. PTEN/Akt pathway axis was identified as a target of drug resistance induced by miR-221.Conclusion. Our results revealed that miR-221 is an important regulator for chemotherapy sensitivity and showed miR-221 as a potential target for drug sensitization.


2021 ◽  
Author(s):  
Tengfei Bian ◽  
Yuzhi Wang ◽  
Jordy F Botello ◽  
Qi Hu ◽  
Yunhan Jiang ◽  
...  

Smoking is associated with worse clinical outcomes for lung cancer patients. Cell-based studies suggest that NNK (a tobacco specific carcinogen) promotes lung cancer progression. Given its short half-life, the physiological relevance of these in vitro results remains elusive. NNAL, a major metabolite of NNK with a similar structure, a chiral center, and a longer half-life, has never been evaluated in cancer cells. In this study, we characterized the effect of NNAL and its enantiomers on cancer progression among a panel of NSCLC cell lines and explored the associated mechanisms. We found that (R)-NNAL promotes cell proliferation, enhances migration, and induces drug resistance while (S)-NNAL has much weaker effects. Mechanistically, (R)-NNAL phosphorylates and deactivates LKB1 via the β-AR signaling in the LKB1 wild type NSCLC cell lines, contributing to the enhanced proliferation, migration, and drug resistance. Of note, NNK exposure also increases the phosphorylation of LKB1 in A/J mice. More importantly, human lung cancer tissues appear to have elevated LKB1 phosphorylation. Our results reveal, for the first time, that NNAL may promote lung cancer progression through LKB1 deactivation in an isomer-dependent manner.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4892
Author(s):  
Rehab Sabour ◽  
Marwa F. Harras ◽  
Omkulthom Mohamed Al Kamaly ◽  
Najla Altwaijry

The overexpression of survivin is usually accompanied by an increased resistance of cancer cells to chemotherapeutic agents in addition to cancer aggressiveness. Consequently, survivin is considered as an attractive target to develop new promising anticancer candidates. A series of novel 3-cyanopyridine derivatives was synthesized and assessed for their cytotoxic activity against three human cancer cell lines: prostate carcinoma (PC-3), breast cancer (MDA-MB-231) and hepatocellular carcinoma (HepG2). In addition, their activities were evaluated in comparison with a standard anticancer drug 5-FU. Compounds 5c and 5e both exhibited promising cytotoxicity against all the tested cell lines; especially, 5e showed better cytotoxic effect than the reference drug 5-FU. In order to evaluate the safety of these compounds, they were tested on the normal cell line WI-38, revealing their toxic selectivity toward cancer cells over normal ones. Further studies were performed in order to understand their mechanism of action; we examined the ability of our promising compounds 5c and 5e to induce cell cycle arrest. Both resulted in a notable induction of cell cycle arrest at the G2/M phase, along with an increase in the DNA content in the pre-G1 phase, giving us an indication of the incidence of apoptosis. 5c and 5e were further subjected to additional study using Annexin V-FITC assay in order to evaluate their ability to induce apoptosis. The results showed a marked increase in the early and late apoptotic cells, as well as an increase in the percentage of necrosis. Furthermore, Western blotting assay was accomplished using different concentrations of 5c and 5e. The results revealed a striking reduction in survivin expression through proteasome-dependent survivin degradation in addition to a decrease in the expression of some other inhibitor of apoptosis proteins (IAP) family proteins: Livin, XIAP, and C-IAP1 in a concentration-dependent manner. A docking study of 5c and 5e compounds in the dimerization site of survivin was also performed, showing agreement with the in vitro anti-survivin activity.


2019 ◽  
Vol 18 (15) ◽  
pp. 2124-2130
Author(s):  
Amany Belal

Background: For further exploration of the promising pyrrolizine scaffold and in continuation of our previous work, that proved the potential anticancer activity of the hit compound I, a new series of pyrrolizines 2-5 and 7-9 were designed and synthesized. Methods: Structures of the new compounds were confirmed by IR, 1H-NMR, 13C-NMR and elemental analysis. Antitumor activity for the prepared compounds against human breast adenocarcinoma (MCF-7), liver (HEPG2) and colon (HCT116) cancer cell lines was evaluated using SRB assay method. Result: Compounds 2, 3 and 5 were the most potent on colon cancer cells, their IC50 values were less than 5 µM. Compounds 2, 3 and 8 were the most potent on liver cancer cells, their IC50 values were less than 10 µM. As for MCF7, compounds 2, 7, 8 and 9 were the most active with IC50 values less than 10 µM. We can conclude that combining pyrrolizine scaffold with urea gave abroad spectrum anticancer agent 2 against the three tested cell lines. Micronucleus assays showed that compounds 2, 3, 8 are mutagenic and can induce apoptosis. In addition, caspase-3 activation was evaluated and compound 2 showed increase in the level of caspase-3 (9 folds) followed by 3 (8.28 folds) then 8 (7.89 folds). Conclusion: The obtained results encourage considering these three compounds as novel anticancer prototypes.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Kaili Long ◽  
Lili Gu ◽  
Lulu Li ◽  
Ziyu Zhang ◽  
Enjie Li ◽  
...  

AbstractApurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document