scholarly journals Functional Interactomes of Genes Showing Association with Type-2 Diabetes and Its Intermediate Phenotypic Traits Point towards Adipo-Centric Mechanisms in Its Pathophysiology

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 601
Author(s):  
Aditya Saxena ◽  
Nitin Wahi ◽  
Anshul Kumar ◽  
Sandeep Kumar Mathur

The pathogenic mechanisms causing type 2 diabetes (T2D) are still poorly understood; a greater awareness of its causation can lead to the development of newer and better antidiabetic drugs. In this study, we used a network-based approach to assess the cellular processes associated with protein–protein interaction subnetworks of glycemic traits—HOMA-β and HOMA-IR. Their subnetworks were further analyzed in terms of their overlap with the differentially expressed genes (DEGs) in pancreatic, muscle, and adipose tissue in diabetics. We found several DEGs in these tissues showing an overlap with the HOMA-β subnetwork, suggesting a role of these tissues in β-cell failure. Many genes in the HOMA-IR subnetwork too showed an overlap with the HOMA-β subnetwork. For understanding the functional theme of these subnetworks, a pathway-to-pathway complementary network analysis was done, which identified various adipose biology-related pathways, containing genes involved in both insulin secretion and action. In conclusion, network analysis of genes showing an association between T2D and its intermediate phenotypic traits suggests their potential role in beta cell failure. These genes enriched the adipo-centric pathways and were expressed in both pancreatic and adipose tissue and, therefore, might be one of the potential targets for future antidiabetic treatment.

2021 ◽  
Vol 35 (10) ◽  
Author(s):  
Noura N. Ballasy ◽  
Anshul S. Jadli ◽  
Pariya Edalat ◽  
Sean Kang ◽  
Ali Fatehi Hassanabad ◽  
...  

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2016 ◽  
Vol 21 (12) ◽  
pp. 1726-1732 ◽  
Author(s):  
N Schmitz ◽  
S S Deschênes ◽  
R J Burns ◽  
K J Smith ◽  
A Lesage ◽  
...  

2009 ◽  
Vol 55 (5) ◽  
pp. 43-48 ◽  
Author(s):  
V Shvarts

This review deals with the role of adipose tissue inflammation (ATI) in the development of type 2 diabetes mellitus (DM2). ATI is regarded as a link between obesity and DM2. The review illustrates the involvement of main adipokines in pathogenesis of DM2 and provides a detailed description of such factors as impaired adiponectin and stimulation of cytokine production responsible for metabolic disorders, activation of lipolysis, in adipocytes, increased fatty acid and triglyceride levels, suppression of insulin activity at the receptor and intracellular levels. Adipokines, in the first place cytokines, act on the insulin signal pathway and affect the intracellular inflammatory kinase cascade. At the intercellular level, ATI stimulates JNK and IKK-beta/kB responsible for the development of insulin resistance via such mechanisms as activation of cytokine secretion in the adipose tissue, oxidative stress, and induction of endoplasmic reticulum enzymes. The key role of JNK and IKK-beta/kB in the inhibition of the insulin signal pathway is mediated through inactivation of insulin receptor substrate 1. Also, it is shown that ATI modulates B-cell function and promotes progressive reduction of insulin secretion.


2019 ◽  
Vol 8 (6) ◽  
pp. 854 ◽  
Author(s):  
Min-Woo Lee ◽  
Mihye Lee ◽  
Kyoung-Jin Oh

Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues—the white adipose tissue (WAT) and brown adipose tissue (BAT)—secrete bioactive peptides and proteins, known as “adipokines” and “batokines,” respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, “exosomal microRNAs (miRNAs)” were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors—adipokines, batokines, and exosomal miRNA—in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tianyu Feng ◽  
Kexin Li ◽  
Pingping Zheng ◽  
Yanjun Wang ◽  
Yaogai Lv ◽  
...  

Objective. Type 2 diabetes mellitus (T2DM) is a metabolic disease with high incidence, which has seriously affected human life and health. MicroRNA, a short-chain noncoding RNA, plays an important role in T2DM. Identification of meaningful microRNA modules and the role of microRNAs provide a basis for searching potential biomarkers of T2DM. Materials and Methods. In this study, three newly diagnosed patients with T2DM and three controls were selected for Whole Peripheral Blood RNA Sequencing to establish a microRNA library. Weighted gene coexpression network analysis (WGCNA) was applied to construct coexpression modules and to detect the trait-related microRNA modules; then, KEGG enrichment analysis was performed to predict the biological function of the interest modules, and candidate hub microRNAs were screened out by the value of module membership (MM) and protein-protein interaction (PPI) network. Result. Four microRNA modules (blue, brown, magenta, and turquoise) were highly associated with the T2DM; the number of miRNAs in these modules ranged from 41 to 469. The Fc gamma R-mediated phagocytosis pathway, Rap1 signaling pathway, MAPK signaling pathway, and Lysosome pathway were common pathways in three of the four modules. RPS27A, UBC, and RAC1 were the top three proteins in our study; their corresponding RNAs were miR-1271-5p, miR-130a-3p, miR-130b-3p, and miR-574-3p. Conclusion. In summary, this study identified blood miRNAs in human T2DM using RNA sequencing. The findings may be the foundation for understanding the potential role of miRNAs in T2DM.


Diabetologia ◽  
2020 ◽  
Vol 63 (12) ◽  
pp. 2616-2627
Author(s):  
Robert L. Hanson ◽  
◽  
Cristopher V. Van Hout ◽  
Wen-Chi Hsueh ◽  
Alan R. Shuldiner ◽  
...  

2010 ◽  
Vol 16 (1) ◽  
pp. 93-103 ◽  
Author(s):  
M. V. Tsvetkova ◽  
V. N. Khirmanov ◽  
N. N. Zybina

The paper reviews publications concerned the role of nonesterifi ed fatty acids (NEFA) in pathogenesis of cardiovascular diseases. NEFAs are four and more carbons chain length carbonic acids and they are presented in free form (nonesterifi ed) in human body. Plasma NEFAs are produced by the adipose tissue triglyceride lipolysis, another source are lipoproteins such as chylomicrons, very low density lipoproteins and intermediate density lipoproteins. Elevated NEFA concentrations in plasma are the risk factor of cardiovascular diseases and type 2 diabetes mellitus and the independent risk factor of hypertension and sudden death. NEFA plasma concentration is elevated in atherosclerosis, acute myocardial infarction, diabetes mellitus, obesity, hypertension, and often in metabolic syndrome. A probable cause of NEFAs accumulation in plasma may be overeating and low physical activity, which result in increase of adipose tissue mass, lipolysis intensifi cation and elevation of NEFAs concentration in plasma. The role of elevated plasma NEFA concentration in a number of conditions (abdominal obesity, atherogenic dyslipidemia, insulin resistance, type 2 diabetes mellitus, endothelial dysfunction, vascular infl ammation, atherosclerosis, hypertension, ischemic heart disease, rhythm disturbances, sudden death) and possible ways of their correction are discussed.


Sign in / Sign up

Export Citation Format

Share Document