scholarly journals Structure-Based Virtual Screening of Ultra-Large Library Yields Potent Antagonists for a Lipid GPCR

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1634
Author(s):  
Arman A. Sadybekov ◽  
Rebecca L. Brouillette ◽  
Egor Marin ◽  
Anastasiia V. Sadybekov ◽  
Aleksandra Luginina ◽  
...  

Cysteinyl leukotriene G protein-coupled receptors, CysLT1R and CysLT2R, regulate bronchoconstrictive and pro-inflammatory effects and play a key role in allergic disorders, cardiovascular diseases, and cancer. CysLT1R antagonists have been widely used to treat asthma disorders, while CysLT2R is a potential target against uveal melanoma. However, very few selective antagonist chemotypes for CysLT receptors are available, and the design of such ligands has proved to be challenging. To overcome this obstacle, we took advantage of recently solved crystal structures of CysLT receptors and an ultra-large Enamine REAL library, representing a chemical space of 680 M readily available compounds. Virtual ligand screening employed 4D docking models comprising crystal structures of CysLT1R and CysLT2R and their corresponding ligand-optimized models. Functional assessment of the candidate hits yielded discovery of five novel antagonist chemotypes with sub-micromolar potencies and the best Ki = 220 nM at CysLT1R. One of the hits showed inverse agonism at the L129Q constitutively active mutant of CysLT2R, with potential utility against uveal melanoma.

2019 ◽  
Vol 20 (6) ◽  
pp. 1402 ◽  
Author(s):  
Antonella Di Pizio ◽  
Maik Behrens ◽  
Dietmar Krautwurst

G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Huiyun Zhang ◽  
Xiaoning Zeng ◽  
Shaoheng He

Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.


2011 ◽  
Vol 29 (5) ◽  
pp. 614-623 ◽  
Author(s):  
Santiago Vilar ◽  
Giulio Ferino ◽  
Sharangdhar S. Phatak ◽  
Barkin Berk ◽  
Claudio N. Cavasotto ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3580 ◽  
Author(s):  
Airi Jo-Watanabe ◽  
Toshiaki Okuno ◽  
Takehiko Yokomizo

Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.


2021 ◽  
Vol 120 (3) ◽  
pp. 129a
Author(s):  
Viktoriia Shaulskaia ◽  
Aleksandra Luginina ◽  
Polina Khorn ◽  
Anastasiia Gusach ◽  
Olga Sukhacheva ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3392-3392
Author(s):  
Adriana C Drost ◽  
Ute Krauß ◽  
Lothar Kanz ◽  
Robert Möhle

Abstract Abstract 3392 CD34+ hematopoietic stem- and progenitor cells (HPC) express high levels of the G protein-coupled receptors (GPCR) CXCR4 and CysLT1. In contrast to the established role of CXCR4 in stem cell homing, the function of CysLT1 in HPC remains only partially understood. We found that upon stimulation of peripheral blood CD34+ HPC in vitro with the respective ligands (CXCL12/SDF1 for CXCR4 and the cysteinyl-leukotriene LTD4 for CysLT1), both receptors similarly mediate the following functional activities: intracellular calcium fluxes, actin polymerization, adhesion to endothelium in vitro and chemotaxis. By Westernblot analysis, we could demonstrate Pyk2- and MAP-kinase phosphorylation as pivotal elements of CysLT1 signaling. These pathways have previously been identified also in CXCR4 signaling. To further analyze signal transduction pathways of both receptors, CD34+ cells were pretreated with pertussis toxin (PTX) or with a specific PKC inhibitor, which is an isoform-specific inhibitory myristoylated peptide derived from the pseudosubstrate (PS) region of PKCzeta, mimics the substrate, and maintains PKC in its nonactive isoform. Subsequently, we determined actin polymerization by flow cytometry using phalloidin-FITC, and adhesion to IL-1 stimulated endothelial cells (HUVEC). CXCR4 signaling leading to actin polymerization was found to be completely blocked by preincubation with pertussis toxin (PTX) and therefore is mediated exclusively by Gi proteins, while CysLT1 also involves Gq proteins as reflected by only partial inhibition by PTX. For both receptors, the Pyk2 signaling pathway leading to actin polymerization and adhesion was completely suppressed by preincubation with PSzeta and therefore dependent on atypical PKCzeta, which is calcium and DAG independent. We further examined whether these two similarly functioning receptors maintain any crosstalk, as has been reported for GPCR. Their possible interaction was explored using actin polymerization as a functional read-out. CXCR4- and CysLT1-mediated actin polymerization in response to their respective ligand was induced within 10 sec and returned to basal levels after 4 min. A second challenge after 4 min with the same ligand resulted in a complete suppression, demonstrating self-desensitization of both receptors. Interestingly, restimulating CXCL12-induced cells with LTD4 after 4 min resulted in complete suppression of actin polymerization, whereas restimulating LTD4-induced cells with CXCL12 lead to F-actin levels comparable to those achieved with the first challenge. These data show for the first time that CXCR4 can cross-desensitize CysLT1 while there is no crosstalk from CysLT1 to CXCR4. In conclusion, CXCR4 and CysLT1 share major signaling pathways. However, the ability to desensitize other GPCR is strikingly different. The finding that CXCR4 cross-desensitizes CysLT1 but not vice versa could explain our observation that a CysLT1 antagonist (montelukast) did not mobilize HPC in vivo, as the presence of CXCL12 in the stem cell niche may result in desensitization of CysLT1. In contrast, CXCR4-dependent bone marrow homing may not be influenced by conditions with high local and systemic cysteinyl-leukotriene concentrations, e.g. during allergy and inflammation. In the absence of CXCR4 activation however, CysLT1 could be important for homing of stem and progenitor cells in areas other than the bone marrow with a high local concentration of cysteinyl leukotrienes, e.g. in inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Shome S. Bhunia ◽  
Anil K. Saxena

Background: Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery. Objective: The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane bound proteins with complex constitution and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures however majority of the GPCR structures remain unsolved. In this context HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs. Methods: The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in absence of GPCR crystal structures (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor sub type selectivity and receptor behaviour in comparison with GPCR crystal structures . Results: The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases HM proteins were found to outscore crystal structures also. Conclusion: The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at molecular level. Thus HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.


Sign in / Sign up

Export Citation Format

Share Document