scholarly journals MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1531
Author(s):  
Zsuzsanna Gaál

Since the well-known hallmarks of cancer were described by Hanahan and Weinberg, fundamental advances of molecular genomic technologies resulted in the discovery of novel puzzle pieces in the multistep pathogenesis of cancer. MicroRNAs are involved in the altered epigenetic pattern and metabolic phenotype of malignantly transformed cells. They contribute to the initiation, progression and metastasis-formation of cancers, also interacting with oncogenes, tumor-suppressor genes and epigenetic modifiers. Metabolic reprogramming of cancer cells results from the dysregulation of a complex network, in which microRNAs are located at central hubs. MicroRNAs regulate the expression of several metabolic enzymes, including tumor-specific isoforms. Therefore, they have a direct impact on the levels of metabolites, also influencing epigenetic pattern due to the metabolite cofactors of chromatin modifiers. Targets of microRNAs include numerous epigenetic enzymes, such as sirtuins, which are key regulators of cellular metabolic homeostasis. A better understanding of reversible epigenetic and metabolic alterations opened up new horizons in the personalized treatment of cancer. MicroRNA expression levels can be utilized in differential diagnosis, prognosis stratification and prediction of chemoresistance. The therapeutic modulation of microRNA levels is an area of particular interest that provides a promising tool for restoring altered metabolism of cancer cells.

2021 ◽  
Vol 28 ◽  
pp. 107327482110412
Author(s):  
Karolina Kozal ◽  
Paweł Jóźwiak ◽  
Anna Krześlak

In the 1920s, Otto Warburg observed the phenomenon of altered glucose metabolism in cancer cells. Although the initial hypothesis suggested that the alteration resulted from mitochondrial damage, multiple studies of the subject revealed a precise, multistage process rather than a random pattern. The phenomenon of aerobic glycolysis emerges not only from mitochondrial abnormalities common in cancer cells, but also results from metabolic reprogramming beneficial for their sustenance. The Warburg effect enables metabolic adaptation of cancer cells to grow and proliferate, simultaneously enabling their survival in hypoxic conditions. Altered glucose metabolism of cancer cells includes, inter alia, qualitative and quantitative changes within glucose transporters, enzymes of the glycolytic pathway, such as hexokinases and pyruvate kinase, hypoxia-inducible factor, monocarboxylate transporters, and lactate dehydrogenase. This review summarizes the current state of knowledge regarding inhibitors of cancer glucose metabolism with a focus on their clinical potential. The altered metabolic phenotype of cancer cells allows for targeting of specific mechanisms, which might improve conventional methods in anti-cancer therapy. However, several problems such as drug bioavailability, specificity, toxicity, the plasticity of cancer cells, and heterogeneity of cells in tumors have to be overcome when designing therapies based on compounds targeted in cancer cell energy metabolism.


2018 ◽  
Vol 1870 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Linchong Sun ◽  
Caixia Suo ◽  
Shi-ting Li ◽  
Huafeng Zhang ◽  
Ping Gao

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3485
Author(s):  
Assunta Sellitto ◽  
Giovanni Pecoraro ◽  
Giorgio Giurato ◽  
Giovanni Nassa ◽  
Francesca Rizzo ◽  
...  

Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 89 ◽  
Author(s):  
Nishant Gandhi ◽  
Gokul Das

Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors’ metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 356-356
Author(s):  
Meng Tang ◽  
Qi Zhang ◽  
Kangping Zhang ◽  
Xi Zhang ◽  
Hanping Shi

Abstract Objectives Current studies have confirmed that the sensitivity of the ketogenic diet (KD) therapy for cancer depends on the low expression of ketolytic enzymes. However, increasing evidence showed that heterogeneity of tumor metabolism leads to inconsistent efficacies of KD therapy, which broke the illusion of the possibility of cancer treatment. Our study aims to construct colon cancer metabolism-related molecular subtyping. Furthermore, to explore the metabolic heterogeneity in diverse colon cancer cells and illuminate the mechanisms of mitochondrial metabolic reprogramming. Thus, providing a theoretical basis for clinical nutritional therapy and combined intervention measures based on metabolic molecular phenotyping. Methods We selected 19 genes associated with glucose and the keto-body metabolic pathway, then constructed a prognostic gene signature by LASSO and KM curve.  Based on the screened metabolic molecules, we further explored the nutrition metabolic heterogeneity and illuminate our understanding of mitochondrial metabolic reprogramming under nutritional stress in vivo. Results Through the integration of patients’ transcriptomics data,  we stratified colon cancer patients into three significant phenotypes with distinct glycolytic and ketolytic characteristics. We identified glycolysis + subtype with either GLUT1 or PFKFB3 overexpression, and ketolysis + subtype with either OXCT1 or ACAT1 deficiency.  In general, combining glycolysis+/ketolysis-phenotype demonstrated the worst prognosis. Furthermore, we discovered the metabolic heterogeneity through western blot and energy metabolic phenotype analysis which also confirmed that these different colon cancer cells showed great significance in metabolic reprogramming under nutritional stress. Conclusions The multi-target combination of metabolic phenotyping proved to be a foundation for individualized molecular stratified treatment which plays an essential role in predicting effectiveness of nutritional modulation therapy among colon cancer patients. It provided a theoretical basis for the clinical trial of KD therapy for patients with specific metabolic subtypes of colon cancer. Funding Sources The National Key Research and Development Program: The key technology of palliative care and nursing for cancer patients.


2016 ◽  
Vol 44 (5) ◽  
pp. 1499-1505 ◽  
Author(s):  
Michelle Potter ◽  
Emma Newport ◽  
Karl J. Morten

Influential research by Warburg and Cori in the 1920s ignited interest in how cancer cells' energy generation is different from that of normal cells. They observed high glucose consumption and large amounts of lactate excretion from cancer cells compared with normal cells, which oxidised glucose using mitochondria. It was therefore assumed that cancer cells were generating energy using glycolysis rather than mitochondrial oxidative phosphorylation, and that the mitochondria were dysfunctional. Advances in research techniques since then have shown the mitochondria in cancer cells to be functional across a range of tumour types. However, different tumour populations have different bioenergetic alterations in order to meet their high energy requirement; the Warburg effect is not consistent across all cancer types. This review will discuss the metabolic reprogramming of cancer, possible explanations for the high glucose consumption in cancer cells observed by Warburg, and suggest key experimental practices we should consider when studying the metabolism of cancer.


2021 ◽  
Vol 13 (2) ◽  
pp. 114-39
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: A lot of contemporary cancer research has concentrated on genetic influence. However, cancer also involves biochemical changes, such as metabolic adaptation to support the aberrant cell proliferation.CONTENT: The fast cell proliferation in cancer cells enforce a metabolic re-arrangement to promote their long-term survival. The increased glucose uptake and fermentation of glucose to lactate are common features of this altered metabolism known as “the Warburg effect”. These metabolic pathways regulation enable cancer cells to produce adenosine triphosphate (ATP) in an efficient way. Epigenetic and metabolic changes also both affect molecular rewiring in cancer cells and promote cancer development and progression.SUMMARY: Metabolic rewiring and epigenetic remodeling establishing a direct link between metabolism and nuclear transcription to promote the survival of tumor cells. A further understanding of how metabolic remodeling can result in epigenetic changes in tumors, affecting cancer cell differentiation, proliferation, and/or apoptosis, will lead to a new strategy for cancer therapy.KEYWORDS: cancer metabolism, epigenetics, metabolic reprogramming, molecular rewiring


2017 ◽  
Vol 114 (52) ◽  
pp. 13732-13737 ◽  
Author(s):  
Yang Wang ◽  
Jia Liu ◽  
Xin Jin ◽  
Dapeng Zhang ◽  
Dongxue Li ◽  
...  

The Warburg effect, characterized by increased glucose uptake and lactate production, is a well-known universal across cancer cells and other proliferating cells. PKM2, a splice isoform of the pyruvate kinase (PK) specifically expressed in these cells, serves as a major regulator of this metabolic reprogramming with an adjustable activity subjected to numerous allosteric effectors and posttranslational modifications. Here, we have identified a posttranslational modification on PKM2, O-GlcNAcylation, which specifically targets Thr405 and Ser406, residues of the region encoded by the alternatively spliced exon 10 in cancer cells. We show that PKM2 O-GlcNAcylation is up-regulated in various types of human tumor cells and patient tumor tissues. The modification destabilized the active tetrameric PKM2, reduced PK activity, and led to nuclear translocation of PKM2. We also observed that the modification was associated with an increased glucose consumption and lactate production and enhanced level of lipid and DNA synthesis, indicating that O-GlcNAcylation promotes the Warburg effect. In vivo experiments showed that blocking PKM2 O-GlcNAcylation attenuated tumor growth. Thus, we demonstrate that O-GlcNAcylation is a regulatory mechanism for PKM2 in cancer cells and serves as a bridge between PKM2 and metabolic reprogramming typical of the Warburg effect.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 762
Author(s):  
Oleg Shuvalov ◽  
Alexandra Daks ◽  
Olga Fedorova ◽  
Alexey Petukhov ◽  
Nickolai Barlev

The specific molecular features of cancer cells that distinguish them from the normal ones are denoted as “hallmarks of cancer”. One of the critical hallmarks of cancer is an altered metabolism which provides tumor cells with energy and structural resources necessary for rapid proliferation. The key feature of a cancer-reprogrammed metabolism is its plasticity, allowing cancer cells to better adapt to various conditions and to oppose different therapies. Furthermore, the alterations of metabolic pathways in malignant cells are heterogeneous and are defined by several factors including the tissue of origin, driving mutations, and microenvironment. In the present review, we discuss the key features of metabolic reprogramming and plasticity associated with different stages of tumor, from primary tumors to metastases. We also provide evidence of the successful usage of metabolic drugs in anticancer therapy. Finally, we highlight new promising targets for the development of new metabolic drugs.


2020 ◽  
Author(s):  
Bing Han ◽  
Lu Wang ◽  
Meilin Wei ◽  
Cynthia Rajani ◽  
Runming Wei ◽  
...  

AbstractFructose metabolism is increasingly recognized as a preferred energy source for cancer cell proliferation. However, dietary fructose rarely enters the bloodstream. Therefore, it remains unclear how cancer cells acquire a sufficient amount of fructose to supplement their energy needs. Here we report that the cancer cells can convert glucose into fructose through intra- and extracellular polyol pathways. The fructose metabolism bypasses normal aerobic respiration’s self-control to supply excessive metabolites to glycolysis and causes the Warburg effect. Inhibition of fructose production drastically suppressed glycolysis and ATP production in cancers. Furthermore, we determined that a glucose transporter, SLC2A8/GLUT8, exports intracellular fructose to other cells in the tumor microenvironment. Taken together, our study identified overlooked fructose resources for cancer cells as an essential part of their metabolic reprogramming and caused the Warburg effect.Statement of SignificanceOur findings in this study suggest that the Warburg effect is actually achieved by means of fructose metabolism, instead of glucose metabolism alone. Fructose metabolism results in accelerated glycolysis and an increased amount of ATP and key intermediates for anabolic metabolism.


Sign in / Sign up

Export Citation Format

Share Document