scholarly journals Membrane Permeabilities of Ascorbic Acid and Ascorbate

Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 73 ◽  
Author(s):  
Christof Hannesschlaeger ◽  
Peter Pohl

Vitamin C (VC)—a collective term for the different oxidation and protonation forms of ascorbic acid (AscH)—is an essential micronutrient that serves as (i) a potent antioxidant and (ii) a cofactor of a manifold of enzymatic processes. Its role in health is related to redox balance maintenance, which is altered in diseases such as obesity, cancer, neurodegenerative diseases, hypertension, and autoimmune diseases. Despite its importance, VC uptake has been poorly investigated. Available literature values for the passive membrane permeability P of lipid bilayers for AscH scatter by about 10 orders of magnitude. Here, we show by voltage clamp that P − of AscH’s anionic form (ascorbate Asc − ) is negligible. To cross the membrane, Asc − picks up a proton in the membrane vicinity and releases it on the other side of the membrane. This leads to a near-membrane pH drop that was visualized by scanning pH microelectrodes. The AscH concentration dependent pH profiles indicated P   =   1.1   ±   0.1   ×   10 − 8   cm / s . Thus, AscH’s P is comparable to that of sorbitol and much lower than that of other weak acids like acetic acid or salicylic acid. The observation suggests that the capacity of the passive transcellular transport pathway across the lipid matrix does not suffice to ensure the required VC intake from the gastrointestinal tract.

1991 ◽  
Vol 56 (4) ◽  
pp. 923-932
Author(s):  
Jana Stejskalová ◽  
Pavel Stopka ◽  
Zdeněk Pavlíček

The ESR spectra of peroxidase systems of methaemoglobin-ascorbic acid-hydrogen peroxide and methaemoglobin-haptoglobin complex-ascorbic acid-hydrogen peroxide have been measured in the acetate buffer of pH 4.5. For the system with methaemoglobin an asymmetrical signal with g ~ 2 has been observed which is interpreted as the perpendicular region of anisotropic spectrum of superoxide radical. On the other hand, for the system with methaemoglobin-haptoglobin complex the observed signal with g ~ 2 is symmetrical and is interpreted as a signal of delocalized electron. After realization of three repeatedly induced peroxidase processes the ESR signal of the perpendicular part of anisotropic spectrum of superoxide radical is distinctly diminished, whereas the signal of delocalized electron remains practically unchanged. An amino acid analysis of methaemoglobin along with results of the ESR measurements make it possible to derive a hypothesis about the role of haptoglobin in increasing of the peroxidase activity of methaemoglobin.


2013 ◽  
Vol 9 ◽  
pp. 8-14 ◽  
Author(s):  
Yan Sun ◽  
Jing Sun ◽  
Chao-Guo Yan

A fast and convenient protocol for the synthesis of novel spiro[dihydropyridine-oxindole] derivatives in satisfactory yields was developed by the three-component reactions of arylamine, isatin and cyclopentane-1,3-dione in acetic acid at room temperature. On the other hand the condensation of isatin with two equivalents of cyclopentane-1,3-dione gave 3,3-bis(2-hydroxy-5-oxo-cyclopent-1-enyl)oxindole in high yields. The reaction mechanism and substrate scope of this novel reaction is briefly discussed.


1972 ◽  
Vol 25 (10) ◽  
pp. 2107 ◽  
Author(s):  
GB Deacon ◽  
GD Fallon

Bismuth triarenesulphinates, Bi(02SR)3 [R = Ph, p-MeC6H4, p-ClC6H4, 2,4,6-(Me2CH)3C6H2, and p-MeCONHC6H4], have been prepared by reaction of bismuth triacetate with the appropriate arenesulphinio acids in glacial acetic acid, and the first two compounds have also been obtained by reaction of triphenyl-bismuth with the appropriate mercuric arenesulphinates. The sulphur-oxygen stretching frequencies of the bismuth sulphinates are indicative of O-sulphinate coordination, and the compounds are considered to be polymeric with bridging O-sulphinate groups and six-coordinate bismuth. Thermal decomposition of Bi(O2SR)3 (R = Ph, p-MeC6H4, or p-CIC6H4) under vacuum gave the corresponding triarylbismuth compounds and sulphur dioxide, the preparation of tri-p-chlorophenylbismuth being accompanied by formation of di-p-chlorophenyl sulphone and S-p-chlorophenyl p-chlorobenzenethiosulphonate. Pyrolysis of the other triarenesulphinates did not yield organobismuth compounds.


Nature ◽  
1936 ◽  
Vol 137 (3467) ◽  
pp. 618-618 ◽  
Author(s):  
W. DAVIES ◽  
G. A. ATKINS ◽  
P. C. B. HUDSON

1970 ◽  
Vol 48 (7) ◽  
pp. 1347-1350 ◽  
Author(s):  
Pei-Show Juo ◽  
G. Stotzky

Globulins, albumins, and basic proteins were extracted from seeds of red kidney bean (Phaseolus vulgaris), and their distribution was in a ratio of about 3:2:1, respectively. The globulin fraction constituted a major portion of the reserve proteins and was hydrolyzed rapidly during germination. More than 90% of the basic proteins, extractable with 0.05 N acetic acid, disappeared 12 days after germination. Although the decrease in total albumin was not as marked as with the other two fractions, a number of components of this fraction disappeared during the early stages of germination, but several new components were detected about 8 days after germination. The apparent synthesis of new globulin components during germination was also observed, but no synthesis of basic protein could be detected.


2015 ◽  
Vol 68 (2) ◽  
pp. 7679-7688
Author(s):  
Fabián Rico Rodríguez ◽  
Carolina Gutiérrez Cortés ◽  
Consuelo Díaz Moreno

Demand for minimally processed fruits have increased due to their nutritional value and an increasing change in consumption habits. Physicochemical, microbiological, structural and sensory changes were determined in minimally processed mangoes (MPM) with chitosan (CH) edible coatings and lemon and orange essential oils (EOL). The MPM was first dipped in citric acid and a texturizing solution and then dipped in CH and lemon or orange EOL coatings. Weight loss, sensory acceptance, total soluble solids, total acidity, ascorbic acid, color changes, firmness and elasticity, and microbiological changes were quantified for 11 days of refrigerated storage. The CH and lemon EOL coating had more acceptance than the other treatments. No differences were found (p>0.05) for weight loss, total acidity, ascorbic acid, firmness or elasticity. There was a high amount of total phenols due to the EOL composition, as well as a high antioxidant capacity in the early days of storage. This characteristic decreased in the final days of the study. There was a decrease in the microbial charge for the lemon EOL treatment, as compared to the other samples. The CH and lemon EOL coating helped to maintain the shelf-life of the MPM for 11 days of storage without affecting the sensory acceptance. The CH and Orange EOL coating did not have an effect on the MPM physicochemical attributes; however, the sensory acceptance was negatively affected with off-flavors conferred to the MPM.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Helena Abramovič ◽  
Blaž Grobin ◽  
Nataša Poklar Ulrih ◽  
Blaž Cigić

Trolox, gallic acid, chlorogenic acid, caffeic acid, catechin, epigallocatechin gallate, and ascorbic acid are antioxidants used as standards for reaction with chromogenic radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH⋅) and 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS⋅+), and Folin–Ciocalteu (FC) reagent. The number of exchanged electrons has been analyzed as function of method and solvent. A majority of compounds exchange more electrons in FC assay than in ABTS and DPPH assays. In reaction with chromogenic radicals, the largest number of electrons was exchanged in buffer (pH 7.4) and the lowest reactivity was in methanol (DPPH) and water (ABTS). At physiological pH, the number of exchanged electrons of polyphenols exceeded the number of OH groups, pointing to the important contribution of partially oxidized antioxidants, formed in the course of reaction, to the antioxidant potential. For Trolox, small impact on the number of exchanged electrons was observed, confirming that it is more suitable as a standard compound than the other antioxidants.


2004 ◽  
Vol 16 (3) ◽  
pp. 147-154 ◽  
Author(s):  
Anderson D. Barata-Soares ◽  
Maria Luiza P. A. Gomez ◽  
Carlos Henrique de Mesquita ◽  
Franco M. Lajolo

Since the first isolation of ascorbic acid (AsA) in 1928, few papers have been published regarding the biosynthesis of AsA in plants, especially in fruits. It took as long as 1998, before Wheeler, Jones and Smirnoff, based on a study with Arabidopsis leaves, proposed what can be considered the main pathway of biosynthesis of AsA, in which L-galactose (L-GAL) is a key precursor. This paper reports the effectiveness of some precursors (cold or radiolabeled) in the biosynthesis of AsA in different plants: green sweet pepper, white-pulp guava, red-pulp guava, papaya and strawberry at two ripening stages (mature green and ripe for papaya and mature green and half red for strawberry) and broccoli. The 'Smirnoff-Wheeler' pathway was functioning and active in all sources studied, as demonstrated by the increase in AsA contents and incorporation of labeled precursors into AsA. In papaya, the AsA content in the ripe fruit was higher than in the mature green, indicating the synthesis of AsA during ripening. On the other hand, the AsA content in the mature green strawberry was similar to that of the half red fruits. Our data demonstrate that L-GAL and L-Galactono-1,4-lactone (L-GL) are effective precursors for the biosynthesis of AsA in fruits and also provided additional evidence for the participation of D-mannose (D-MAN) and D-glucose-1P in the biosynthesis of AsA in plants.


Sign in / Sign up

Export Citation Format

Share Document