scholarly journals Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-Target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 736
Author(s):  
Malose J. Mphahlele ◽  
Emmanuel N. Agbo ◽  
Samantha Gildenhuys ◽  
Itumeleng B. Setshedi

A series of 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehydes and their hydrazone derivatives were evaluated as potential multi-target-directed ligands in vitro against cholinesterases, β-secretase, cyclooxygenase-2, and lipoxygenase-15 (LOX-15), as well as for free radical-scavenging activities. The most active compounds against LOX-15 were also evaluated for activity against the human lipoxygenase-5 (LOX-5). Kinetic studies against AChE, BChE, and β-secretase (BACE-1) were performed on 2-(3-fluorophenyl)- (3b) and 2-(4-chlorophenyl)-6-[(4-trifluoromethylphenyl)hydrazonomethyl]furo[3,2-h]chromen-5-one (3e) complemented with molecular docking (in silico) to determine plausible protein-ligand interactions on a molecular level. The docking studies revealed hydrogen and/or halogen bonding interactions between the strong electron-withdrawing fluorine atoms of the trifluoromethyl group with several residues of the enzyme targets, which are probably responsible for the observed increased biological activity of these hydrazone derivatives. The two compounds were found to moderately inhibit COX-2 and lipoxygenases (LOX-5 and LOX-15). Compounds 3b and 3e were also evaluated for cytotoxicity against the breast cancer MCF-7 cell line and Hek293-T cells.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 341
Author(s):  
Malose J. Mphahlele ◽  
Samantha Gildenhuys ◽  
Sizwe J. Zamisa

N-(2-Acetyl-4-bromophenyl)-4-methylbenzenesulfonamide (2) was transformed into 5-(4-methoxymethylstyryl)-2-(p-tolylsulfonamido)acetophenone (3a) and 5-(4- trifluoromethylstyryl)-2-(p-tolylsulfonamido)acetophenone (3b). Their structures were determined using a combination of NMR (1H & 13C) and mass spectroscopic as well as single crystal X-ray diffraction techniques. These compounds and the corresponding precursor, 2-amino-5-bromoacetophenone (1), were evaluated through enzymatic assays in vitro for inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities as well as antioxidant effect through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Molecular docking was performed on 3a to determine plausible protein–ligand interactions on a molecular level. Their drug likeness properties (absorption, distribution, metabolism, and excretion) and ability to cross the blood–brain barrier (BBB) have also been predicted at theoretical level.


2019 ◽  
Vol 20 (21) ◽  
pp. 5451
Author(s):  
Malose J. Mphahlele ◽  
Samantha Gildenhuys ◽  
Emmanuel N. Agbo

A series of novel 2-carbo–substituted 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehydes and their 6-(4-trifluoromethyl)phenylhydrazono derivatives have been prepared and evaluated for biological activity against the human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The most active compounds from each series were, in turn, evaluated against the following enzyme targets involved in Alzheimer’s disease, β-secretase (BACE-1) and lipoxygenase-15 (LOX-15), as well as for anti-oxidant potential. Based on the in vitro results of ChE and β-secretase inhibition, the kinetic studies were conducted to determine the mode of inhibition by these compounds. 2-(4-Methoxyphenyl)-5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde (2f), which exhibited significant inhibitory effect against all these enzymes was also evaluated for activity against the human lipoxygenase-5 (LOX-5). The experimental results were complemented with molecular docking into the active sites of these enzymes. Compound 2f was also found to be cytotoxic against the breast cancer MCF-7 cell line.


2020 ◽  
Vol 17 (2) ◽  
pp. 233-247
Author(s):  
Krishna A. Gajjar ◽  
Anuradha K. Gajjar

Background: Pharmacophore mapping and molecular docking can be synergistically integrated to improve the drug design and discovery process. A rational strategy, combiphore approach, derived from the combined study of Structure and Ligand based pharmacophore has been described to identify novel GPR40 modulators. Methods: DISCOtech module from Discovery studio was used for the generation of the Structure and Ligand based pharmacophore models which gave hydrophobic aromatic, ring aromatic and negative ionizable as essential pharmacophoric features. The generated models were validated by screening active and inactive datasets, GH scoring and ROC curve analysis. The best model was exposed as a 3D query to screen the hits from databases like GLASS (GPCR-Ligand Association), GPCR SARfari and Mini-Maybridge. Various filters were applied to retrieve the hit molecules having good drug-like properties. A known protein structure of hGPR40 (pdb: 4PHU) having TAK-875 as ligand complex was used to perform the molecular docking studies; using SYBYL-X 1.2 software. Results and Conclusion: Clustering both the models gave RMSD of 0.89. Therefore, the present approach explored the maximum features by combining both ligand and structure based pharmacophore models. A common structural motif as identified in combiphore for GPR40 modulation consists of the para-substituted phenyl propionic acid scaffold. Therefore, the combiphore approach, whereby maximum structural information (from both ligand and biological protein) is explored, gives maximum insights into the plausible protein-ligand interactions and provides potential lead candidates as exemplified in this study.


Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.


2013 ◽  
Vol 19 (11) ◽  
pp. 5015-5030 ◽  
Author(s):  
Yingtao Liu ◽  
Zhijian Xu ◽  
Zhuo Yang ◽  
Kaixian Chen ◽  
Weiliang Zhu

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5999
Author(s):  
Annita Katopodi ◽  
Evangelia Tsotsou ◽  
Triantafylia Iliou ◽  
Georgia-Eirini Deligiannidou ◽  
Eleni Pontiki ◽  
...  

A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a–4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4′-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3′-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. in silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60–97%) values.


2020 ◽  
Author(s):  
Rafael Nunes ◽  
Diogo Vila Viçosa ◽  
Paulo J. Costa

<div>Halogen bonds (HaBs) are noncovalent interactions where halogen atoms act as electrophilic species interacting with Lewis bases. These interactions are relevant in biochemical systems being increasingly explored in drug discovery, mainly to modulate protein–ligand interactions. In this work, we report evidence for the existence of HaB-mediated halogen–phospholipid recognition phenomena as our molecular dynamics simulations support the existence of favorable interactions between halobenzene derivatives and both phosphate (PO) or ester (CO) oxygen acceptors from model phospholipid bilayers, thus providing insights into the role of HaBs in driving the permeation of halogenated drug like molecules across biological membranes. This represents a relevant molecular mechanism, previously overlooked, determining the pharmacological activity of halogenated molecules with implications in drug discovery and development, a place where halogenated molecules account for a significant part of the chemical space. Our data also shows that, as the ubiquitous hydrogen bond, HaBs should be accounted for in the development of membrane permeability models.</div>


Author(s):  
Thenmozhi Marudhadurai ◽  
Navabshan Irfan

Piperine is known for its versatile therapeutic activity. It has been used for various disease conditions (e.g., cold, cough, etc.). Piperine is an alkaloid found in black pepper. It possesses various pharmacological actions like anti-inflammatory, anti-oxidant, anti-cholinergic, and anti-cancerous. The above-mentioned properties will be studied by selecting target proteins COX-2 protein, angiotensin converting enzyme, acetylcholineesterases, and survivin using computational docking study. This chapter explains the inhibition property of piperine against selected target protein from the results of docking studies. Based on the docking scores and protein-ligand interactions, piperine was found to bind well in the active site of the selected target proteins. It ensures the binding efficacy of piperine against selected target proteins. Docking scores and protein-ligand interactions plays an important role in its therapeutic activity.


2018 ◽  
Vol 29 (2) ◽  
pp. 92-96
Author(s):  
Amina S. Yusuf ◽  
Ibrahim Sada ◽  
Yusuf Hassan ◽  
Temitope O. Olomola ◽  
Christiana M. Adeyemi ◽  
...  

Abstract The synthesis of five monocarbonyl analogues of curcumin is described. In vitro anti-malarial assay of the compounds was carried out and the effect of the substituents on the aryl ring has been described. The results show that all the five compounds exhibited some reasonable activity against the chloroquine-resistant plasmodium parasite. Molecular docking studies further confirmed the observed biological activity of the compounds.


Sign in / Sign up

Export Citation Format

Share Document