scholarly journals New Insights into Mechanisms of Long-term Protective Anti-tumor Immunity Induced by Cancer Vaccines Modified by Virus Infection

Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 55 ◽  
Author(s):  
Volker Schirrmacher

The topic is how to achieve long-term protective anti-tumor immunity by anti-cancer vaccination and what are its mechanisms. Cancer vaccines should instruct the immune system regarding relevant cancer targets and contain signals for innate immunity activation. Of central importance is T-cell mediated immunity and thus a detailed understanding of cognate interactions between tumor antigen (TA)-specific T cells and TA-presenting dendritic cells. Microbes and their associated molecular patterns initiate early inflammatory defense reactions that can contribute to the activation of antigen-presenting cells (APCs) and to costimulation of T cells. The concommitant stimulation of naive TA-specific CD4+ and CD8+ T cells with TAs and costimulatory signals occurs in T-APC clusters that generate effectors, such as cytotoxic T lymphocytes and T cell mediated immunological memory. Information about how such memory can be maintained over long times is updated. The role that the bone marrow with its specialized niches plays for the survival of memory T cells is emphasized. Examples are presented that demonstrate long-term protective anti-tumor immunity can be achieved by post-operative vaccination with autologous cancer vaccines that are modified by virus infection.

2000 ◽  
Vol 355 (1400) ◽  
pp. 1093-1101 ◽  
Author(s):  
P. C. Doherty ◽  
J. M. Riberdy ◽  
G. T. Belz

The recent development of techniques for the direct staining of peptide–specific CD8 + T cells has revolutionized the analysis of cell–mediated immunity (CMI) in virus infections. This approach has been used to quantify the acute and long–term consequences of infecting laboratory mice with the readily eliminated influenza A viruses (fluA) and a persistent γherpesvirus (γHV). It is now, for the first time, possible to work with real numbers in the analysis of CD8 + T CMI, and to define various characteristics of the responding lymphocytes both by direct flow cytometric analysis and by sorting for further in vitro manipulation. Relatively little has yet been done from the latter aspect, though we are rapidly accumulating a mass of numerical data. The acute, antigen–driven phases of the fluA and γHV–specific response look rather similar, but CD8 + T–cell numbers are maintained in the long term at a higher ‘set point’ in the persistent infection. Similarly, these ‘memory’ T cells continue to divide at a much greater rate in the γHV–infected mice. New insights have also been generated on the nature of the recall response following secondary challenge in both experimental systems, and the extent of protection conferred by large numbers of virus–specific CD8 + T cells has been determined. However, there are still many parameters that have received little attention, partly because they are difficult to measure. These include the rate of antigen–specific CD8 + T–cell loss, the extent of the lymphocyte ‘diaspora’ to other tissues, and the diversity of functional characteristics, turnover rates, clonal life spans and recirculation profiles. The basic question for immunologists remains how we reconcile the extraordinary plasticity of the immune system with the mechanisms that maintain a stable milieu interieur. This new capacity to quantify CD8 + T–cell responses in readily manipulated mouse models has obvious potential for illuminating homeostatic control, particularly if the experimental approaches to the problem are designed in the context of appropriate predictive models.


1988 ◽  
Vol 168 (6) ◽  
pp. 2193-2206 ◽  
Author(s):  
M Awwad ◽  
R J North

This study shows that intravenous injection of 1 mg of anti-L3T4 mAb (GK1.5) into thymectomized mice bearing the syngeneic L5178Y lymphoma results, after a delay of 2-3 d, in complete regression of this tumor and in long-term host survival. A flow cytofluorometric examination of the spleen cells of mAb-treated mice revealed that antibody treatment resulted in the elimination of greater than 98% of L3T4+ T cells, but had no effect on the Lyt-2+ T cells subset. Tumor regression was immunologically mediated, because L5178Y lymphoma cells were shown to be L3T4-, and regression of the tumor failed to occur in mice that had been lethally irradiated before anti-L3T4 mAb was given. Tumor regression was mediated by tumor-sensitized Lyt2+ T cells, as evidenced by the finding that treatment of tumor-bearing mice with anti-Lyt-2 mAb alone, or in combination with anti-L3T4 mAb, resulted in enhancement of tumor growth and a significant decrease in host survival time. Moreover, the spleens of mice whose tumors were undergoing regression in response to anti-L3T4 mAb treatment contained Lyt-2+ T cells capable, on passive transfer, of causing regression of a tumor in recipient mice. These results can be interpreted as showing that removal of tumor-induced L3T4+ suppressor T cells results in the release of Lyt-2+ effector T cells from suppression, and consequently in the generation of enough Lyt-2+ T cell-mediated immunity to cause tumor regression. This can only be achieved, however, if immunity to the tumor is mediated exclusively by Lyt-2+ T cells, as is the case for the L5178Y lymphoma. In the case of the P815 mastocytoma, treatment with anti-L3T4 mAb was without a therapeutic effect, and this was in keeping with the finding that immunity to this tumor is mediated by L3T4+, as well by Lyt-2+ T cells.


1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


Author(s):  
Monireh Mohsenzadegan ◽  
Parizad Bavandpour ◽  
Mohammad Reza Nowroozi ◽  
Erfan Amini ◽  
Masoumeh Kourosh-Arami ◽  
...  

: Targeting inhibitory receptors on T cells in the tumor sites can promote effective anti-tumor immunity in bladder cancer. Unfortunately, the main dilemma is that a large number of patients remain refractory to CTLA-4, PD-1, and PD-L1 blockade therapies. T-cell immunoglobulin and mucin domain 3 (Tim-3) is an inhibitory receptor expressed on T cells and innate immune cells. Both in vivo and in vitro data from patients with advanced cancers support the role of Tim-3 inhibition in satisfactory anti-tumor immunity. In bladder cancer, the expression level of Tim-3 significantly increases with advanced pathological grade and T stage. Therefore, rationality implies that designing novel monoclonal antibodies reactive with Tim-3 alone or in combination with other checkpoint inhibitors may indicate a favorable response in bladder cancer. Here, we aimed to investigate the possibility of targeting Tim-3 as a novel anti-cancer treatment for bladder cancer.


Circulation ◽  
2019 ◽  
Vol 140 (10) ◽  
pp. 846-863 ◽  
Author(s):  
Ciara N. Magee ◽  
Naoka Murakami ◽  
Thiago J. Borges ◽  
Tetsunosuke Shimizu ◽  
Kassem Safa ◽  
...  

Background: Transplantation is the treatment of choice for many patients with end-stage organ disease. Despite advances in immunosuppression, long-term outcomes remain suboptimal, hampered by drug toxicity and immune-mediated injury, the leading cause of late graft loss. The development of therapies that promote regulation while suppressing effector immunity is imperative to improve graft survival and minimize conventional immunosuppression. Notch signaling is a highly conserved pathway pivotal to T-cell differentiation and function, rendering it a target of interest in efforts to manipulate T cell–mediated immunity. Methods: We investigated the pattern of Notch-1 expression in effector and regulatory T cells (Tregs) in both murine and human recipients of a solid-organ transplant. Using a selective human anti-Notch-1 antibody (aNotch-1), we examined the effect of Notch-1 receptor inhibition in full major histocompatibility complex–mismatch murine cardiac and lung transplant models, and in a humanized skin transplant model. On the basis of our findings, we further used a genetic approach to investigate the effect of selective Notch-1 inhibition in Tregs. Results: We observed an increased proportion of Tregs expressing surface and intracellular (activated) Notch-1 in comparison with conventional T cells, both in mice with transplants and in the peripheral blood of patients with transplants. In the murine cardiac transplant model, peritransplant administration of aNotch-1 (days 0, 2, 4, 6, 8, and 10) significantly prolonged allograft survival in comparison with immunoglobulin G–treated controls. Similarly, aNotch-1 treatment improved both histological and functional outcomes in the murine lung transplant model. The use of aNotch-1 resulted in a reduced proportion of both splenic and intragraft conventional T cells, while increasing the proportion of Tregs. Furthermore, Tregs isolated from aNotch-1–treated mice showed enhanced suppressive function on a per-cell basis, confirmed with selective Notch-1 deletion in Tregs (Foxp3 EGFPCre Notch1 fl/fl ). Notch-1 blockade inhibited the mammalian target of rapamycin pathway and increased the phosphorylation of STAT5 (signal transducer and activator of transcription 5) in murine Tregs. Notch-1 low Tregs isolated from human peripheral blood exhibited more potent suppressive capacity than Notch-1 high Tregs. Last, the combination of aNotch-1 with costimulation blockade induced long-term tolerance in a cardiac transplant model, and this tolerance was dependent on CTLA-4 (cytotoxic T-lymphocyte–associated antigen-4) signaling. Conclusions: Our data reveal a promising, clinically relevant approach for immune modulation in transplantation by selectively targeting Notch-1.


1984 ◽  
Vol 159 (3) ◽  
pp. 861-880 ◽  
Author(s):  
A L DeFranco ◽  
J D Ashwell ◽  
R H Schwartz ◽  
W E Paul

Resting B lymphocytes are activated, proliferate, and differentiate into antibody-secreting cells when cultured with long-term lines of major histocompatibility complex (MHC)-restricted, antigen-specific T cell in the presence of the antigen for which the T cells are specific. Under optimal conditions, essentially all B cells are activated and approximately 35% enter S phase in the absence of antigens for which the B cells are specific. Activation and proliferation are observed in cells from both normal mice and mice with the xid-determined immune defect. Highly purified B cells bearing Ia molecules for which the T cells are "cospecific" can present antigen to T cells with the resulting T cell stimulation leading to the activation and proliferation of the antigen-presenting B cells. However, B cells that do not bear Ia molecules for which the T cells are cospecific are also activated and proliferate if antigen and a source of antigen-presenting B cells or macrophage-rich cells of proper histocompatibility type are present. Thus, resting B cells, both normal and "xid", can be activated by non-MHC restricted factors without receptor cross-linkage. Experiments are presented that support the concept that local production and action of such unrestricted activating factors may be responsible for the MHC-restriction of T cell-B cell interaction seen in many circumstances.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vijayashree Mysore ◽  
Xavier Cullere ◽  
Joseph Mears ◽  
Florencia Rosetti ◽  
Koshu Okubo ◽  
...  

AbstractClassical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A276-A276
Author(s):  
Cassandra Gilmour ◽  
Li Wang ◽  
Juan Dong ◽  
Sarah Stone ◽  
Keman Zhang ◽  
...  

BackgroundCancer immunotherapies, specifically checkpoint blockade therapies, have demonstrated clinical importance for long term patient survival. One of the major limitations to checkpoint blockade therapies, is the low response rate: ~30% with anti-CTLA4 and anti-PD1 treatment. This may be due to heterogeneity of the patients‘ immune system and the tumor microenvironment including T cell inhibitions. There is a clear need to study this phenomenon and develop additional therapies for long term survival to include a broad range of patients. V-domain Immunoglobulin Suppressor of T-cell Activation (VISTA) is a suppressive protein expressed on many cell types in the tumor microenvironment including cytotoxic T cells. VISTA’s role on T cells has been described as maintaining quiescence and peripheral tolerance in a graft vs host disease model, but is not fully understood in context of the tumor microenvironment.MethodsWe use a series of invivo experiments, including T cell specific VISTA knock outs, to understand the role of VISTA on T cells in the tumor microenvironment.ResultsHere we show a series of in vivo experiments that suggest VISTA has a potent intrinsic role on T cells and therefore anti-tumor immunity. Using a T cell specific VISTA knock out, our results suggest that the absence of VISTA on T cells in combination with anti-CTLA4 and vaccine is a very powerful tumor suppressor compared to vaccine and anti-CTLA4 treatment alone. These results also indicate that the absence of VISTA alters the phenotype of cytotoxic T cells in several ways including the production of inflammatory cytokines.ConclusionsOur preliminary data provides foundation to study VISTA’s role intrinsic to T cells in the tumor microenvironment and how disrupting VISTA’s influence intrinsic to T cells may be advantageous for anti-tumor immunity and long term patient survival.Ethics ApprovalAll in vivo studies were reviewed and approved by Institutional Animal Care and Use Committee (Approval number 2019–2142).


2020 ◽  
Vol 65 (1) ◽  
pp. 24-38
Author(s):  
N. N. Popova ◽  
V. G. Savchenko

Background. The timely reconstitution of the donor-derived immune system is a key factor in the prevention of such post-transplant complications as graft versus host disease, relapse or secondary tumours and various infections. These complications affect the long-term survival of patients after allogeneic stem cell transplantation.Aim — to describe the main stages of T Cell–mediated immune recovery in patients after allogeneic stem cell transplantation.General findings. T-cell–mediated immunity is responsible for anti-infective and anti-tumour immune response. The early post-transplant period is characterized by the thymus-independent pathway of T-cell recovery largely involving proliferation of mature donor T cells, which were transplanted to the patient together with hematopoietic stem cells. To a lesser extent, this recovery pathway is realized through the expansion of host naïve and memory T cells, which survived after conditioning. Thymus-dependent reconstitution involves generation of de novo naïve T cells and subsequent formation of a pool of memory T-cells providing the main immunological effects — graft versus tumour and graft versus host reactions. A better understanding of the T-cell immune reconstitution process is important for selecting optimized pre-transplant conditioning regimens and patient-specific immunosuppressive therapy approaches, thus reducing the risks of post-transplant complications and improving the long-term survival of patients after allogeneic stem cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document