scholarly journals Fetal Undernutrition Induces Resistance Artery Remodeling and Stiffness in Male and Female Rats Independent of Hypertension

Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 424
Author(s):  
Perla Y. Gutiérrez-Arzapalo ◽  
Pilar Rodríguez-Rodríguez ◽  
David Ramiro-Cortijo ◽  
Marta Gil-Ortega ◽  
Beatriz Somoza ◽  
...  

Fetal undernutrition programs hypertension and cardiovascular diseases, and resistance artery remodeling may be a contributing factor. We aimed to assess if fetal undernutrition induces resistance artery remodeling and the relationship with hypertension. Sprague–Dawley dams were fed ad libitum (Control) or with 50% of control intake between days 11 and 21 of gestation (maternal undernutrition, MUN). In six-month-old male and female offspring we assessed blood pressure (anesthetized and tail-cuff); mesenteric resistance artery (MRA) structure and mechanics (pressure myography), cellular and internal elastic lamina (IEL) organization (confocal microscopy) and plasma MMP-2 and MMP-9 activity (zymography). Systolic blood pressure (SBP, tail-cuff) and plasma MMP activity were assessed in 18-month-old rats. At the age of six months MUN males exhibited significantly higher blood pressure (anesthetized or tail-cuff) and plasma MMP-9 activity, while MUN females did not exhibit significant differences, compared to sex-matched controls. MRA from 6-month-old MUN males and females showed a smaller diameter, reduced adventitial, smooth muscle cell density and IEL fenestra area, and a leftward shift of stress-strain curves. At the age of eighteen months SBP and MMP-9 activity were higher in both MUN males and females, compared to sex-matched controls. These data suggest that fetal undernutrition induces MRA inward eutrophic remodeling and stiffness in both sexes, independent of blood pressure level. Resistance artery structural and mechanical alterations can participate in the development of hypertension in aged females and may contribute to adverse cardiovascular events associated with low birth weight in both sexes.

1968 ◽  
Vol 58 (4) ◽  
pp. 600-612 ◽  
Author(s):  
Robert Boyd ◽  
Donald C. Johnson

ABSTRACT The effects of various doses of testosterone propionate (TP) upon the release of luteinizing hormone (LH or ICSH) from the hypophysis of a gonadectomized male or female rat were compared. Prostate weight in hypophysectomized male parabiotic partners was used to evaluate the quantity of circulating LH. Hypophyseal LH was measured by the ovarian ascorbic acid depletion method. Males castrated when 45 days old secreted significantly more LH and had three times the amount of pituitary LH as ovariectomized females. Administration of 25 μg TP daily reduced the amount of LH in the plasma, and increased the amount in the pituitary gland, in both sexes. Treatment with 50 μg caused a further reduction in plasma LH in males, but not in females, while pituitary levels in both were equal to that of their respective controls. LH fell to the same low level in partners of males or females receiving 100 μg TP. When gonadectomized at 39 days, males and females had the same amount of plasma LH, but males had more stored hormone. Pituitary levels were unchanged from controls following treatment with 12.5, 25 or 50 μg TP daily, but plasma values dropped an equal amount in both sexes with the latter two doses. Androgenized males or females, gonadectomized when 39 days old, were very sensitive to the effects of TP and plasma LH was significantly reduced with 12.5 μg daily. Pituitary LH in androgenized males was higher than that of normal males but was reduced to normal by small amounts of TP. The amount of stored LH in androgenized females was not different from that of normal females and it was unchanged by any dose of TP tested. Results are consistent with the conclusion that the male hypothalamic-hypophyseal axis is at least as sensitive as the female axis to the negative feedback effects of TP. Androgenization increases the sensitivity to TP in both males and females.


2021 ◽  
pp. svn-2020-000834
Author(s):  
Koteswara Rao Nalamolu ◽  
Bharath Chelluboina ◽  
Casimir A Fornal ◽  
Siva Reddy Challa ◽  
David M Pinson ◽  
...  

Background and purposeThe therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury.MethodsTransient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke.ResultsThe infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males).ConclusionsDespite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


1982 ◽  
Vol 60 (10) ◽  
pp. 1247-1250 ◽  
Author(s):  
Janet L. Lister ◽  
Bruce B. Virgo

The basal activities of aniline hydroxylase (AH), hexobarbital hydroxylase (HH), and ethylmorphine N-demethylase (ED) were measured in the 9000 × g supernatant of kidneys and lungs from male and female rats. No ED activity was detected in any tissue although all tissues N-demethylated three other substrates. The activities of AH and HH were not sex dependent in either kidney or lung. Similarly, pulmonary and renal microsomal protein concentrations were independent of sex. In addition, cytochrome P-450 levels in the kidney were the same in males and females (pulmonary P-450 was not measured). The pulmonary hydroxylases were more active than the renal enzymes in both sexes. In males, phenobarbital (ip, 50 rng∙kg−1∙day−1 for 3 days) failed to induce AH or HH in either kidney or lung; it did not increase the weight or microsomal protein levels of these organs and it also failed to increase renal P-450. Thus, the basal activities of AH and HH in lungs and kidneys are not different in male and female rats and are not increased by phenobarbital.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Wararat Kittikulsuth ◽  
David M Pollock

Endothelin B (ET B ) receptors mediate vasodilation, anti-inflammation and natriuresis, which ultimately contribute to blood pressure control. We previously showed that renal medullary ET B receptor function is maintained in female angiotensin (Ang) II hypertensive rats, while male Ang II hypertensive rats have blunted ET B -induced natriuretic responses. Because female rats are more resistance to blood pressure elevation induced by high salt intake and/or Ang II infusion, we hypothesized that ET B receptors protect female rats against the hypertensive response and renal injury induced by a high salt diet and chronic Ang II infusion compared to males. Male and female rats received Ang II infusion (150 ng/kg/min; sc.) with 4% NaCl for 4 weeks; blood pressure was measured by telemetry. After a week of Ang II infusion with a high salt diet, subsets of both male and female rats received the ET B antagonist, A-192621, at three doses on consecutive weeks (1, 3, and 10 mg/kg/d in food). Male rats had a significantly higher blood pressure compared to females after 4 weeks of Ang II (178±10 vs. 138±10 mmHg; p<0.05). A-192621 resulted in a dose-dependent increase in blood pressure in female Ang II hypertensive rats (167±8 mmHg at 10 mg/kg/d; p<0.05); the increase produced by A-192621 in male Ang II hypertensive rats was not statistically significant (193±10 mmHg). After 4 weeks of Ang II infusion, the level of proteinuria and nephrinuria was higher in male rats compared to female. A-192621 did not further increase urinary excretion of protein or nephrin in both male and female Ang II hypertensive rats. In conclusion, these results support the hypothesis that ET B receptors provide more protection against hypertension during chronic Ang II infusion in female rats compared to male.


1994 ◽  
Vol 76 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
D. J. Prezant ◽  
B. Richner ◽  
T. K. Aldrich ◽  
D. E. Valentine ◽  
E. I. Gentry ◽  
...  

The effects of long-term undernutrition (10 wk) on diaphragm contractility, fatigue, and fiber type proportions were studied in male and female rats. Contractility and fatigue resistance indexes were measured in an in vitro diaphragm costal strip preparation by using direct stimulation at 37 degrees C. Undernutrition allowed for continued growth in males and females but with substantial reductions in weight gain. Relative to control rats of the same sex, final weights were significantly lower in undernourished males (74 +/- 3%) than females (90 +/- 5%), but weight gain was not significantly different between undernourished males (58 +/- 5%) and females (60 +/- 3%). Only in males did undernutrition significantly reduce costal diaphragm weight (to 77 +/- 5% of control). Diaphragm forces, normalized for cross-sectional area, were not significantly different from male or female control values. Fatigue resistance indexes (fatigue/baseline force) were increased at all stimulation frequencies in undernourished males but not in undernourished females. Costal diaphragm atrophy, involving types I and II fibers, occurred in undernourished males but not in undernourished females. In conclusion, despite long-term undernutrition reducing weight gain to similar levels in males and females (relative to control), there was excellent preservation of diaphragm weight, function, and structure in females but, although diaphragm atrophy occurred, there was preserved contractility and increased fatigue resistance in males.


1975 ◽  
Vol 146 (2) ◽  
pp. 351-356 ◽  
Author(s):  
N Kaplowitz ◽  
J Kuhlekamp ◽  
G Clifton

The induction of the glutathione S-transferases by phenobarbital and polycyclic hydrocarbons was studied in male and female rats. Administration of phenobarbital resulted in 60-80% increase in S-aryl and S-aralkyl enzyme specific activities, whereas the S-epoxide and S-alkyl activities were increased by 30-40%. In following the sequence of induction, the former two activities were noted to reach peak activities before an increase in the latter two activities was observed. Both 3-methylcholanthrene and 3,4-benzopyrene were shown toi nduce these four enzymic activities, although without the discrimination between pairs of activities noted with phenobarbital. No change in Km accompanied the increase in Vmax. after induction by drugs, and no change occurred in Ki for sulphobromophthalein inhibition. Significantly lower enzyme specific activities were found for three of the activities studied in female rats but no difference was observed in the S-alkyltransferase activity. However, the proportional increase in the enzymic activities in response to phenobarbital was the same in males and females. These studies demonstrate the drug induction of a group of cytosolic drug-metabolizing enzymes as well as the identification of sex differences in these activities.


1967 ◽  
Vol 56 (1) ◽  
pp. 165-176 ◽  
Author(s):  
Donald C. Johnson

ABSTRACT Ventral prostates in hypophysectomized male parabiotic partners of intact animals were used to compare the amount of plasma luteinizing hormone (LH) in males and females of various ages. Ovarian weight, histology, and augmentation with chorionic gonadotrophin, in hypophysectomized androgenized females were used to estimate plasma follicle stimulating hormone (FSH) activity in intact adult males and females. In young animals, up to 50 days of age, males apparently have the same amount of plasma LH as females, but older cyclic females produced significantly heavier prostates in their hypophysectomized male partners than did males. The results are consistent with the interpretation that cyclic surges of LH added to a tonic level produced an average value higher for females than males. In contrast, males of all ages and particularly adults, have a significantly greater amount of circulating FSH than females.


2018 ◽  
Author(s):  
Shaina P Cahill ◽  
John Darby Cole ◽  
Ru Qi Yu ◽  
Jack Clemans-Gibbon ◽  
Jason S Snyder

ABSTRACTThe creation of new neurons in adulthood has potential for treating a number of disorders that are characterized by neurodegeneration or impaired plasticity. Animal models of reduced neurogenesis, and studies of the volume and structural integrity of the hippocampus in humans, suggest a possible therapeutic role for adult neurogenesis in age-related cognitive decline, depression, and schizophrenia. Research over the past 20 years has identified a number of approaches for enhancing adult neurogenesis, such as exercise, NMDA receptor antagonists, antidepressant drugs and environmental enrichment. However, despite the chronic nature of many disorders that impact the human hippocampus, most animal studies have only examined the efficacy of neurogenic treatments over relatively short timescales (∼1 month or less). Additionally, investigations into the regulation of neurogenesis typically include only 1 sex, even though many disorders that affect the hippocampus differentially impact males and females. Here, we therefore tested whether two known pro-neurogenic treatments, running and the NMDA receptor antagonist, memantine, could lead to long-term increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis in both sexes, but effects were minimal after 1 month (both sexes) and completely absent after 5 months (males). Similarly, a single injection of memantine (sMEM) only transiently increased adult neurogenesis in both males and females. To determine whether extended increases in neurogenesis were possible with 2 months of RUN and MEM treatments, we subjected rats to interval running (iRUN), weekly memantine injections (mMEM), or combined treatments (iRUN-mMEM, mMEM-iRUN). We found that 2 months of iRUN increased DCX+ cell density in females but iRUN-mMEM treatment increased DCX+ cell density in males. However, analyses with thymidine analogs revealed that neurogenesis was minimally increased during the initial phases of the 2 month treatments. Collectively, our findings identify sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments that target the hippocampus.


2018 ◽  
Author(s):  
A Matzeu ◽  
L Terenius ◽  
R Martin-Fardon

AbstractBackgroundDespite considerable efforts, few drugs are available for the treatment of alcohol (ethanol [EtOH]) use disorders (AUDs). Ethanol directly or indirectly modulates several aspects of the central nervous system, including neurotransmitter/neuromodulator systems. Relapse vulnerability is a challenge for the treatment of EtOH addiction. Ethanol withdrawal symptoms create motivational states that lead to compulsive EtOH drinking and relapse even after long periods of abstinence. Among the therapeutics to treat AUDs, naltrexone (NTX) is a pharmacological treatment for relapse. The goal of the present study was to evaluate the effect of NTX on EtOH drinking in EtOH-dependent male and female rats during abstinence.MethodsWistar rats (males and females) were first trained to orally self-administer 10% EtOH. Half of them were then made dependent by chronic intermittent EtOH (CIE) vapor exposure, and the other half were exposed to air. Using this model, rats exhibit somatic and motivational signs of withdrawal. At the end of EtOH vapor (or air) exposure, the rats were tested for the effects of NTX (10 mg/kg, p.o.) on EtOH self-administration at three abstinence time points: acute abstinence (8 h, A-Abst), late abstinence (2 weeks, L-Abst), and protracted abstinence (6 weeks, P-Abst).ResultsNTX decreased EtOH intake in nondependent rats, regardless of sex and abstinence time point. In post-dependent rats, the effects of NTX improved with a longer abstinence time (i.e., L-Abst and P-Abst) in males, whereas it similarly reduced EtOH drinking in females at all abstinence points.ConclusionsThe data suggest that the therapeutic efficacy of NTX depends on the time of intervention during abstinence and sex. The data further suggest that EtOH dependence induces different neuroadaptations in male and female rats, reflected by differential effects of NTX. The results underscore the significance of considering the duration of EtOH abstinence and sex for the development of pharmacotherapeutic treatments for AUD.


2002 ◽  
Vol 93 (6) ◽  
pp. 2029-2033 ◽  
Author(s):  
Amy L. Hakeman ◽  
Don D. Sheriff

Brief exposure to −Gz (“push”) reduces eye-level blood pressure (elbp) during subsequent exposure to +Gz(“pull”). This is called the “push-pull effect.” To evaluate the influence of gender and the axis of rotation (pitch vs. roll) on the push-pull effect, 10 isoflurane-anesthetized male and 10 female Sprague-Dawley rats were restrained supine on a heated tilt board. Rats were subjected to two G profiles: a control profile consisting of rotation from 0 Gz to 90° head-up tilt (+1 Gz) for 10 s and a push-pull profile consisting of rotation from 0 Gz to 90° head-down tilt (−1 Gz) for 2 s immediately preceding 10 s of +1 Gz stress. A total of 16 tilts consisting of equal numbers of control and push-pull trials and equal numbers of pitch and roll rotations were imposed by using a counterbalanced design. Gender exerted a significant effect on baseline (0 Gz) ELBP (pressure was ∼4 mmHg higher in females). In males and females, ELBP rose to a similar extent (∼8 mmHg) during push, fell to a similar extent (∼18 mmHg) during control +Gz stress, and fell to a similar extent (∼22 mmHg) during push-pull +Gz stress. Altering the axis of rotation between the x-axis (roll) and the y-axis (pitch) did not influence the results. Thus males and females exhibit a push-pull effect; however, gender and axis of rotation do not appear to influence the push-pull effect in anesthetized rats subjected to tilting.


Sign in / Sign up

Export Citation Format

Share Document