scholarly journals MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 347
Author(s):  
Na-Hyun Lee ◽  
So Jung Kim ◽  
Jeongeun Hyun

Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.

2020 ◽  
Vol 99 (12) ◽  
pp. 1387-1396
Author(s):  
A.F. Goodwin ◽  
C.P. Chen ◽  
N.T. Vo ◽  
J.O. Bush ◽  
O.D. Klein

Clefting of the secondary palate is one of the most common congenital anomalies, and the multiple corrective surgeries that individuals with isolated cleft palate undergo are associated with major costs and morbidities. Secondary palate development is a complex, multistep process that includes the elevation of the palatal shelves from a vertical to horizontal position, a process that is not well understood. The Hippo signaling cascade is a mechanosensory pathway that regulates morphogenesis, homeostasis, and regeneration by controlling cell proliferation, apoptosis, and differentiation, primarily via negative regulation of the downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). We deleted Yap/ Taz throughout the palatal shelf mesenchyme as well as specifically in the posterior palatal shelf mesenchyme, using the Osr2Cre and Col2Cre drivers, respectively, which resulted in palatal shelf elevation delay and clefting of the secondary palate. In addition, the deletion resulted in undersized bones of the secondary palate. We next determined downstream targets of YAP/TAZ in the posterior palatal shelves, which included Ibsp and Phex, genes involved in mineralization, and Loxl4, which encodes a lysyl oxidase that catalyzes collagen crosslinking. Ibsp, Phex, and Loxl4 were expressed at decreased levels in the ossification region in the posterior palatal shelf mesenchyme upon deletion of Yap/ Taz. Furthermore, collagen levels were decreased specifically in the same region prior to elevation. Thus, our data suggest that YAP/TAZ may regulate collagen crosslinking in the palatal shelf mesenchyme, thus controlling palatal shelf elevation, as well as mineralization of the bones of the secondary palate.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia P. Yee ◽  
Yiju Wei ◽  
Soo-Yeon Kim ◽  
Tong Lu ◽  
Stephen Y. Chih ◽  
...  

Abstract Tumor necrosis commonly exists and predicts poor prognoses in many cancers. Although it is thought to result from chronic ischemia, the underlying nature and mechanisms driving the involved cell death remain obscure. Here, we show that necrosis in glioblastoma (GBM) involves neutrophil-triggered ferroptosis. In a hyperactivated transcriptional coactivator with PDZ-binding motif-driven GBM mouse model, neutrophils coincide with necrosis temporally and spatially. Neutrophil depletion dampens necrosis. Neutrophils isolated from mouse brain tumors kill cocultured tumor cells. Mechanistically, neutrophils induce iron-dependent accumulation of lipid peroxides within tumor cells by transferring myeloperoxidase-containing granules into tumor cells. Inhibition or depletion of myeloperoxidase suppresses neutrophil-induced tumor cell cytotoxicity. Intratumoral glutathione peroxidase 4 overexpression or acyl-CoA synthetase long chain family member 4 depletion diminishes necrosis and aggressiveness of tumors. Furthermore, analyses of human GBMs support that neutrophils and ferroptosis are associated with necrosis and predict poor survival. Thus, our study identifies ferroptosis as the underlying nature of necrosis in GBMs and reveals a pro-tumorigenic role of ferroptosis. Together, we propose that certain tumor damage(s) occurring during early tumor progression (i.e. ischemia) recruits neutrophils to the site of tissue damage and thereby results in a positive feedback loop, amplifying GBM necrosis development to its fullest extent.


2018 ◽  
Vol 6 (2) ◽  
pp. 26-30
Author(s):  
Sina Mohagheghi ◽  
Zohreh Khajehahmadi ◽  
Heidar Tavilani

Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of fat in the liver tissue that is usually associated with metabolic disorders. Traditionally, the disease is regarded as a spectrum of pathological conditions ranging from simple steatosis (SS) to non-alcoholic steatohepatitis (NASH) and hepatic fibrosis with progression to cirrhosis. However, so far, there is no available explanation for the disease progression. Several signaling pathways such as transforming growth factor (TGF)-β, hedgehog (HH), and yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling are attributed to the NAFLD pathogenesis. TGF-β1 pathway component expression aligns with HH pathway ligands expression elevate in NASH cirrhosis while they decrease in SS. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway. Similarly, the TAZ level (but not YAP1) is higher in NASH cirrhosis compared to SS. In addition, these three signaling pathways have little molecular similarity but their changes are totally similar in SS and NASH cirrhosis. The present review discusses the main changes in the expression of TGF-β, HH, and YAP/TAZ pathway components in SS and NASH cirrhosis. It is hoped that these data provide a better understanding of the mechanisms that underlie the pathophysiology of NAFLD.


2020 ◽  
Vol 26 (4) ◽  
pp. 742-750
Author(s):  
Yuchen Liu ◽  
Xiaohui Wang ◽  
Yingzi Yang

Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Wanlei Yang ◽  
Xuanyuan Lu ◽  
Tan Zhang ◽  
Weiqi Han ◽  
Jianlei Li ◽  
...  

AbstractOsteoporosis is an osteolytic disorder commonly associated with excessive osteoclast formation. Transcriptional coactivator with PDZ-binding motif (TAZ) is a key downstream effector of the Hippo signaling pathway; it was suggested to be involved in the regulation of bone homeostasis. However, the exact role of TAZ in osteoclasts has not yet been established. In this study, we demonstrated that global knockout and osteoclast-specific knockout of TAZ led to a low-bone mass phenotype due to elevated osteoclast formation, which was further evidenced by in vitro osteoclast formation assays. Moreover, the overexpression of TAZ inhibited RANKL-induced osteoclast formation, whereas silencing of TAZ reduced it. Mechanistically, TAZ bound to TGF-activated kinase 1 (TAK1) and reciprocally inhibited NF-κB signaling, suppressing osteoclast differentiation. Collectively, our findings highlight an essential role of TAZ in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.


2017 ◽  
Vol 96 (11) ◽  
pp. 1229-1237 ◽  
Author(s):  
J. Wang ◽  
J.F. Martin

The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii218-ii218
Author(s):  
Patricia Yee ◽  
Yiju Wei ◽  
Soo Yeon Kim ◽  
Tong Lu ◽  
Cynthia Lawson ◽  
...  

Abstract Tumor necrosis indicates poor prognoses in many cancers, including glioblastomas (GBMs). Although thought to result from chronic ischemia, the underlying nature and mechanisms driving the involved cell death remain obscured by lack of animal models recapitulating the extent of necrosis in human GBMs. The molecular and clinical heterogeneity of GBMs adds further complexity. Not all GBMs contain necrosis. Mesenchymal (MES)-GBM, the subtype correlated with worst prognosis and highest treatment resistance, is most closely associated with necrosis. MES-GBM exhibits hyperactivity of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo tumor suppressive pathway effector whose expression in human GBMs predicts short survival. To elucidate mechanisms driving GBM necrosis, we devised a novel orthotopic mouse model recapitulating human MES-GBM phenotypically and histopathologically by expressing a constitutively-active TAZ mutant (TAZ4SA) in three human GBM cell lines (LN229, U87, and LN18) lacking MES signatures (GBM4SA). GBM4SA mice lived significantly shorter than mice implanted with GBMvector or mutant TAZ unable to bind its downstream effector, TEAD (GBM4SA-S51A). Extensive (≥30% of tumor volume) necrosis was present in GBM4SA mice but not GBMvector or GBM4SA-S51A. In GBM4SA tumors, neutrophils coincide with necrosis temporally and spatially. Neutrophil depletion dampens necrosis. Neutrophils isolated from mouse tumors killed co-cultured tumor cells. Neutrophils induce iron-dependent accumulation of lipid hydroperoxides within tumor cells by transferring myeloperoxidase-containing granules into tumor cells. Inhibiting myeloperoxidase suppresses neutrophil-induced tumor cytotoxicity. Intratumoral glutathione peroxidase 4 (GPX4) overexpression or acyl-CoA synthetase 4 (ACSL4) depletion diminishes necrosis and aggressiveness of tumors. Human GBM analysis indicates neutrophils and ferroptosis are associated with necrosis and predict poor survival. Together, we propose that certain tumor damage(s) during early tumor progression (i.e. ischemia) recruits neutrophils to damaged tissue and results in a positive feedback loop, amplifying GBM necrosis development. We show GBM necrosis involves neutrophil-triggered ferroptosis and reveal an unprecedented pro-tumorigenic role of ferroptosis.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2184
Author(s):  
Valentina Cazzetta ◽  
Sara Franzese ◽  
Claudia Carenza ◽  
Silvia Della Bella ◽  
Joanna Mikulak ◽  
...  

Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.


2010 ◽  
Vol 285 (44) ◽  
pp. 33584-33588 ◽  
Author(s):  
Kerstin Duning ◽  
Deike Rosenbusch ◽  
Marc A. Schlüter ◽  
Yuemin Tian ◽  
Karl Kunzelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document