scholarly journals YAP/TAZ Regulate Elevation and Bone Formation of the Mouse Secondary Palate

2020 ◽  
Vol 99 (12) ◽  
pp. 1387-1396
Author(s):  
A.F. Goodwin ◽  
C.P. Chen ◽  
N.T. Vo ◽  
J.O. Bush ◽  
O.D. Klein

Clefting of the secondary palate is one of the most common congenital anomalies, and the multiple corrective surgeries that individuals with isolated cleft palate undergo are associated with major costs and morbidities. Secondary palate development is a complex, multistep process that includes the elevation of the palatal shelves from a vertical to horizontal position, a process that is not well understood. The Hippo signaling cascade is a mechanosensory pathway that regulates morphogenesis, homeostasis, and regeneration by controlling cell proliferation, apoptosis, and differentiation, primarily via negative regulation of the downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). We deleted Yap/ Taz throughout the palatal shelf mesenchyme as well as specifically in the posterior palatal shelf mesenchyme, using the Osr2Cre and Col2Cre drivers, respectively, which resulted in palatal shelf elevation delay and clefting of the secondary palate. In addition, the deletion resulted in undersized bones of the secondary palate. We next determined downstream targets of YAP/TAZ in the posterior palatal shelves, which included Ibsp and Phex, genes involved in mineralization, and Loxl4, which encodes a lysyl oxidase that catalyzes collagen crosslinking. Ibsp, Phex, and Loxl4 were expressed at decreased levels in the ossification region in the posterior palatal shelf mesenchyme upon deletion of Yap/ Taz. Furthermore, collagen levels were decreased specifically in the same region prior to elevation. Thus, our data suggest that YAP/TAZ may regulate collagen crosslinking in the palatal shelf mesenchyme, thus controlling palatal shelf elevation, as well as mineralization of the bones of the secondary palate.

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 347
Author(s):  
Na-Hyun Lee ◽  
So Jung Kim ◽  
Jeongeun Hyun

Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.


2018 ◽  
Vol 6 (2) ◽  
pp. 26-30
Author(s):  
Sina Mohagheghi ◽  
Zohreh Khajehahmadi ◽  
Heidar Tavilani

Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of fat in the liver tissue that is usually associated with metabolic disorders. Traditionally, the disease is regarded as a spectrum of pathological conditions ranging from simple steatosis (SS) to non-alcoholic steatohepatitis (NASH) and hepatic fibrosis with progression to cirrhosis. However, so far, there is no available explanation for the disease progression. Several signaling pathways such as transforming growth factor (TGF)-β, hedgehog (HH), and yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling are attributed to the NAFLD pathogenesis. TGF-β1 pathway component expression aligns with HH pathway ligands expression elevate in NASH cirrhosis while they decrease in SS. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway. Similarly, the TAZ level (but not YAP1) is higher in NASH cirrhosis compared to SS. In addition, these three signaling pathways have little molecular similarity but their changes are totally similar in SS and NASH cirrhosis. The present review discusses the main changes in the expression of TGF-β, HH, and YAP/TAZ pathway components in SS and NASH cirrhosis. It is hoped that these data provide a better understanding of the mechanisms that underlie the pathophysiology of NAFLD.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Wanlei Yang ◽  
Xuanyuan Lu ◽  
Tan Zhang ◽  
Weiqi Han ◽  
Jianlei Li ◽  
...  

AbstractOsteoporosis is an osteolytic disorder commonly associated with excessive osteoclast formation. Transcriptional coactivator with PDZ-binding motif (TAZ) is a key downstream effector of the Hippo signaling pathway; it was suggested to be involved in the regulation of bone homeostasis. However, the exact role of TAZ in osteoclasts has not yet been established. In this study, we demonstrated that global knockout and osteoclast-specific knockout of TAZ led to a low-bone mass phenotype due to elevated osteoclast formation, which was further evidenced by in vitro osteoclast formation assays. Moreover, the overexpression of TAZ inhibited RANKL-induced osteoclast formation, whereas silencing of TAZ reduced it. Mechanistically, TAZ bound to TGF-activated kinase 1 (TAK1) and reciprocally inhibited NF-κB signaling, suppressing osteoclast differentiation. Collectively, our findings highlight an essential role of TAZ in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.


2017 ◽  
Vol 96 (11) ◽  
pp. 1229-1237 ◽  
Author(s):  
J. Wang ◽  
J.F. Martin

The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.


2010 ◽  
Vol 285 (44) ◽  
pp. 33584-33588 ◽  
Author(s):  
Kerstin Duning ◽  
Deike Rosenbusch ◽  
Marc A. Schlüter ◽  
Yuemin Tian ◽  
Karl Kunzelmann ◽  
...  

2011 ◽  
Vol 193 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Sandra Habbig ◽  
Malte P. Bartram ◽  
Roman U. Müller ◽  
Ricarda Schwarz ◽  
Nikolaos Andriopoulos ◽  
...  

The conserved Hippo signaling pathway regulates organ size in Drosophila melanogaster and mammals and has an essential role in tumor suppression and the control of cell proliferation. Recent studies identified activators of Hippo signaling, but antagonists of the pathway have remained largely elusive. In this paper, we show that NPHP4, a known cilia-associated protein that is mutated in the severe degenerative renal disease nephronophthisis, acts as a potent negative regulator of mammalian Hippo signaling. NPHP4 directly interacted with the kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), leading to derepression of these protooncogenic transcriptional regulators. Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcriptional activity. Consistent with these data, knockdown of NPHP4 negatively affected cellular proliferation and TEAD/TAZ activity, essentially phenocopying loss of TAZ function. These data identify NPHP4 as a negative regulator of the Hippo pathway and suggest that NPHP4 regulates cell proliferation through its effects on Hippo signaling.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ceylan Onursal ◽  
Elisabeth Dick ◽  
Ilias Angelidis ◽  
Herbert B. Schiller ◽  
Claudia A. Staab-Weijnitz

In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.


2021 ◽  
Vol 23 (1) ◽  
pp. 430
Author(s):  
Ángel Ortega ◽  
Ivana Vera ◽  
Maria P. Diaz ◽  
Carla Navarro ◽  
Milagros Rojas ◽  
...  

The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.


Sign in / Sign up

Export Citation Format

Share Document