scholarly journals Effect of PACAP on Hypoxia-Induced Angiogenesis and Epithelial–Mesenchymal Transition in Glioblastoma

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 965
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Daniela Maria Rasà ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.

2019 ◽  
Vol 9 ◽  
Author(s):  
Zhang-qi Cao ◽  
Xue-xi Wang ◽  
Li Lu ◽  
Jing-wen Xu ◽  
Xiao-bin Li ◽  
...  

β-sitosterol (BS), a major bioactive constituent present in plants, has shown potent anti-cancer activity against many human cancer cells, but its activity in pancreatic cancer (PC) cells has rarely been reported. Gemcitabine (GEM) is one of the first-line drugs for PC therapy, however, the treatment effect is not sustained due to prolonged drug resistance. In this study, we firstly studied the anti-PC activity and the mechanism of BS alone and in combination with GEM in vitro and in vivo. BS effectively inhibited the growth of PC cell lines by inhibiting proliferation, inducing G0/G1 phase arrest and apoptosis, suppressed the NF- kB activity, and increased expression of the protein Bax but decreased expression of the protein Bcl-2. Moreover, BS inhibited migration and invasion and downregulated epithelial–mesenchymal transition (EMT) markers and AKT/GSK-3β signaling pathways. Furthermore, the combination of BS and GEM exhibited a significant synergistic effect in MIAPaCa-2 and BXPC-3 cells. More importantly, the combined treatment with BS and GEM lead to significant growth inhibition of PC xenografts. Overall, our data revealed a promising treatment option for PC by the combination therapy of BS and GEM.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Ling Peng ◽  
Li Wen ◽  
Qing-Feng Shi ◽  
Feng Gao ◽  
Bin Huang ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is featured with inflammation and extensive lung remodeling caused by overloaded deposition of extracellular matrix. Scutellarin is the major effective ingredient of breviscapine and its anti-inflammation efficacy has been reported before. Nevertheless, the impact of scutellarin on IPF and the downstream molecular mechanism remain unclear. In this study, scutellarin suppressed BLM-induced inflammation via NF-κB/NLRP3 pathway both in vivo and in vitro. BLM significantly elevated p-p65/p65 ratio, IκBα degradation, and levels of NLRP3, caspase-1, caspase-11, ASC, GSDMDNterm, IL-1β, and IL-18, while scutellarin reversed the above alterations except for that of caspase-11. Scutellarin inhibited BLM-induced epithelial–mesenchymal transition (EMT) process in vivo and in vitro. The expression levels of EMT-related markers, including fibronectin, vimentin, N-cadherin, matrix metalloproteinase 2 (MMP-2) and MMP-9, were increased in BLM group, and suppressed by scutellarin. The expression level of E-cadherin showed the opposite changes. However, overexpression of NLRP3 eliminated the anti-inflammation and anti-EMT functions of scutellarin in vitro. In conclusion, scutellarin suppressed inflammation and EMT in BLM-induced pulmonary fibrosis through NF-κB/NLRP3 signaling.


2020 ◽  
Vol 52 (3) ◽  
pp. 294-301
Author(s):  
Xue Zhu ◽  
Mengxi Yu ◽  
Ke Wang ◽  
Wenjun Zou ◽  
Ling Zhu

Abstract Forkhead box protein M1 (FoxM1) is an important transcription factor involved in various pathological processes including tumor metastasis. The changes of adhesive, migratory, and invasive abilities are considered as crucial events in tumor metastasis progression. In this study, we aimed to investigate the correlation between FoxM1 and retinoblastoma (Rb) metastasis and to explore the detailed mechanism. Wound healing, cell adhesion, and invasion assays showed that FoxM1 overexpression induced epithelial–mesenchymal transition in Y-79 cells and inhibited adhesion and subsequently promoted metastasis of Y-79 cells, while FoxM1 knockdown showed the opposite effects. A luciferase reporter assay and chromatin immunoprecipitation assay provided evidence that FoxM1 promoted matrix metalloproteinase 2 (MMP2) transcription by directly binding to and promoting MMP2 promoter. MMP2 knockdown by siRNA transfection attenuated cell metastasis of Y-79 cells induced by FoxM1 overexpression. Furthermore, the FoxM1-binding site mapped between −1167 and −1161 bp of the MMP2 promoter was identified. Our results suggested that the FoxM1–MMP2 axis plays an important role in Rb metastasis, which may be a novel target for designing therapeutic regimen to control Rb metastasis.


Sign in / Sign up

Export Citation Format

Share Document