scholarly journals Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1075
Author(s):  
Shima Makaremi ◽  
Zahra Asadzadeh ◽  
Nima Hemmat ◽  
Amir Baghbanzadeh ◽  
Alessandro Sgambato ◽  
...  

Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.

2017 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
Judith Anna Seidel ◽  
Atsushi Otsuka ◽  
Kenji Kabashima

Immune checkpoints are essential for preventing immunopathology but can also obstruct anti-tumor immune responses. Recent medical advances in blocking these mechanisms have therefore opened promising avenues in the treatment of cancer.  Various blocking antibodies targeting the immune checkpoints programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are now approved for human use. This review summarizes the properties of PD-1 and CTLA-4 in physiological and tumor settings, and examines the treatment efficacy, side effects and biomarkers of their inhibitors. Future avenues in the application and development of immune checkpoint inhibitors for the treatment of cancer are also explored.


2021 ◽  
Author(s):  
Qiaoqi Sui ◽  
Xi Zhang ◽  
Jinghua Tang ◽  
Kai Han ◽  
Wu Jiang ◽  
...  

Abstract Inflammatory conditions are common complications in colorectal cancer (CRC) and play significant roles in tumor progression and immunosuppression. However, the influence of inflammatory conditions on the tumor response to immune checkpoint inhibitors (ICIs) remains unclear. We included a high microsatellite instability (MSI-H) CRC patient whose primary tumor progressed and liver metastasis regressed after Pembrolizumab treatment. An organoid-T cell coculture model demonstrated an inhibited local immune response instead of systemic immunosuppression. Single-cell RNA sequencing suggested that neutrophils suppress the immune microenvironment, mostly through CTLA-4-associated pathways. A cohort of 73 patients with MSI-H CRC who received ICIs were enrolled, among whom inflammatory conditions were correlated with a poor tumor response. We demonstrated that inflammatory conditions in MSI-H CRCs correlate with resistance to ICIs through neutrophil-associated immunosuppression. Additional CTLA-4 blockade may improve the sensitivity to PD-1 blockade. Clinically, inflammatory conditions could predict a poor response to ICIs in MSI-H CRCs.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


2019 ◽  
Vol 26 (17) ◽  
pp. 3009-3025 ◽  
Author(s):  
Bin Li ◽  
Ho Lam Chan ◽  
Pingping Chen

Cancer is one of the most deadly diseases in the modern world. The last decade has witnessed dramatic advances in cancer treatment through immunotherapy. One extremely promising means to achieve anti-cancer immunity is to block the immune checkpoint pathways – mechanisms adopted by cancer cells to disguise themselves as regular components of the human body. Many review articles have described a variety of agents that are currently under extensive clinical evaluation. However, while checkpoint blockade is universally effective against a broad spectrum of cancer types and is mostly unrestricted by the mutation status of certain genes, only a minority of patients achieve a complete response. In this review, we summarize the basic principles of immune checkpoint inhibitors in both antibody and smallmolecule forms and also discuss potential mechanisms of resistance, which may shed light on further investigation to achieve higher clinical efficacy for these inhibitors.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.


BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e014880 ◽  
Author(s):  
Eva Pike ◽  
Vida Hamidi ◽  
Ingvil Saeterdal ◽  
Jan Odgaard-Jensen ◽  
Marianne Klemp

ObjectiveTo assess the relative effectiveness and cost-effectiveness of seven new drugs (cobimetinib, dabrafenib, ipilimumab, nivolumab, pembrolizumab, trametinib and vemurafenib) used for treatment of patients with advanced malignant melanoma in the Norwegian setting.DesignA multiple technology assessment.PatientsPatients with advanced malignant melanoma aged 18 or older.Data sourcesA systematic search for randomised controlled trials in relevant bibliographic databases.MethodsWe performed network meta-analyses using both direct and indirect evidence with dacarbazine as a common comparator. We ranked the different treatments in terms of their likelihood of leading to the best results for each endpoint. The cost-utility analysis was based on a probabilistic discrete-time Markov cohort model. The model calculated the costs and quality-adjusted life years (QALYs) with different treatment strategies from a healthcare perspective. Sensitivity analysis was performed by means of Monte Carlo simulation.ResultsMonotherapies with a programmed cell death 1 (PD-1) immune-checkpoint-inhibitor had a higher probability of good performance for overall survival than monotherapies with ipilimumab or BRAF/MEK inhibitors. The combination treatments had all similar levels of effectiveness to the PD-1 immune-checkpoint-inhibitors.PD-1 immune-checkpoint-inhibitors are more effective and more costly compared with ipilimumab in monotherapy. Nivolumab in combination with ipilimumab had higher costs and the same level of effectiveness as the PD-1 immune-checkpoint-inhibitors in monotherapy.BRAF/MEK inhibitor combinations (dabrafenib and trametinib or vemurafenib and cobimetinib) had both similar effectiveness and cost-effectiveness; however, the combination therapies are more likely to give higher quality adjusted life year gains than BRAF or MEK inhibitor monotherapies, but to a higher cost.ConclusionsNone of the drugs investigated can be considered cost-effective at what has normally been considered a reasonable willingness-to-pay (WTP) in Norway. Price reductions (from the official list prices) in the region of 63%–84% would be necessary for these drugs to be cost-effective at a WTP of €55 850 per QALY.


Sign in / Sign up

Export Citation Format

Share Document