scholarly journals Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1101
Author(s):  
Mei-Chun Chen ◽  
Li-Lin Hsu ◽  
Sheng-Fan Wang ◽  
Yi-Ling Pan ◽  
Jeng-Fan Lo ◽  
...  

Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.

2019 ◽  
Vol 295 (5) ◽  
pp. 1350-1365 ◽  
Author(s):  
James H. Joly ◽  
Alireza Delfarah ◽  
Philip S. Phung ◽  
Sydney Parrish ◽  
Nicholas A. Graham

Metabolic reprogramming in cancer cells can increase their dependence on metabolic substrates such as glucose. As such, the vulnerability of cancer cells to glucose deprivation creates an attractive opportunity for therapeutic intervention. Because it is not possible to starve tumors of glucose in vivo, here we sought to identify the mechanisms in glucose deprivation–induced cancer cell death and then designed inhibitor combinations to mimic glucose deprivation–induced cell death. Using metabolomic profiling, we found that cells undergoing glucose deprivation–induced cell death exhibited dramatic accumulation of intracellular l-cysteine and its oxidized dimer, l-cystine, and depletion of the antioxidant GSH. Building on this observation, we show that glucose deprivation–induced cell death is driven not by the lack of glucose, but rather by l-cystine import. Following glucose deprivation, the import of l-cystine and its subsequent reduction to l-cysteine depleted both NADPH and GSH pools, thereby allowing toxic accumulation of reactive oxygen species. Consistent with this model, we found that the glutamate/cystine antiporter (xCT) is required for increased sensitivity to glucose deprivation. We searched for glycolytic enzymes whose expression is essential for the survival of cancer cells with high xCT expression and identified glucose transporter type 1 (GLUT1). Testing a drug combination that co-targeted GLUT1 and GSH synthesis, we found that this combination induces synthetic lethal cell death in high xCT-expressing cell lines susceptible to glucose deprivation. These results indicate that co-targeting GLUT1 and GSH synthesis may offer a potential therapeutic approach for targeting tumors dependent on glucose for survival.


2019 ◽  
Vol 234 (11) ◽  
pp. 20648-20661 ◽  
Author(s):  
Zhen Yu ◽  
Ze Yu ◽  
ZhenBao Chen ◽  
Lin Yang ◽  
MingJun Ma ◽  
...  

2021 ◽  
Author(s):  
Wooram Park ◽  
Seok-Jo Kim ◽  
Paul Cheresh ◽  
Jeanho Yun ◽  
Byeongdu Lee ◽  
...  

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein,...


2016 ◽  
Vol 6 (1) ◽  
pp. e1258505 ◽  
Author(s):  
Irena Moserova ◽  
Iva Truxova ◽  
Abhishek D. Garg ◽  
Jakub Tomala ◽  
Patrizia Agostinis ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hyemi Lee ◽  
Eun-Taex Oh ◽  
Bo-Hwa Choi ◽  
Moon-Taek Park ◽  
Ja-Kyeong Lee ◽  
...  

2016 ◽  
Vol 7 (9) ◽  
pp. 5995-6005 ◽  
Author(s):  
Jingye Zhang ◽  
Zining Liu ◽  
Peng Lian ◽  
Jun Qian ◽  
Xinwei Li ◽  
...  

A theranostic probe is designed that specifically illuminates and photoablates cancer cells by sensing pH changes in the lysosomes and mitochondria.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Roberta Palorini ◽  
Tiziana Simonetto ◽  
Claudia Cirulli ◽  
Ferdinando Chiaradonna

Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS) for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Filipa Lopes-Coelho ◽  
Filipa Martins ◽  
Ana Hipólito ◽  
Cindy Mendes ◽  
Catarina O. Sequeira ◽  
...  

The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.


2019 ◽  
Vol 134 ◽  
pp. 350-358 ◽  
Author(s):  
Xiaoyuan Ren ◽  
Sebastin M. Santhosh ◽  
Lucia Coppo ◽  
Fernando T. Ogata ◽  
Jun Lu ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Vanessa Kaplum ◽  
Anelise C. Ramos ◽  
Marcia E. L. Consolaro ◽  
Maria A. Fernandez ◽  
Tânia Ueda-Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document