scholarly journals Alterations in Circulating Monocytes Predict COVID-19 Severity and Include Chromatin Modifications Still Detectable Six Months after Recovery

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1253
Author(s):  
Alberto Utrero-Rico ◽  
Cecilia González-Cuadrado ◽  
Marta Chivite-Lacaba ◽  
Oscar Cabrera-Marante ◽  
Rocío Laguna-Goya ◽  
...  

An early analysis of circulating monocytes may be critical for predicting COVID-19 course and its sequelae. In 131 untreated, acute COVID-19 patients at emergency room arrival, monocytes showed decreased surface molecule expression, including low HLA-DR, in association with an inflammatory cytokine status and limited anti-SARS-CoV-2-specific T cell response. Most of these alterations had normalized in post-COVID-19 patients 6 months after discharge. Acute COVID-19 monocytes transcriptome showed upregulation of anti-inflammatory tissue repair genes such as BCL6, AREG and IL-10 and increased accessibility of chromatin. Some of these transcriptomic and epigenetic features still remained in post-COVID-19 monocytes. Importantly, a poorer expression of surface molecules and low IRF1 gene transcription in circulating monocytes at admission defined a COVID-19 patient group with impaired SARS-CoV-2-specific T cell response and increased risk of requiring intensive care or dying. An early analysis of monocytes may be useful for COVID-19 patient stratification and for designing innate immunity-focused therapies.

2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5462-5462
Author(s):  
Ayman Saad ◽  
Samantha B Langford ◽  
Shin Mineishi ◽  
Lawrence S. Lamb

Abstract Background: Post-transplant cyclophosphamide (PTCy) is increasingly used for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation (HCT) using alternative donors. However, immune reconstitution can be delayed posing an increased risk for CMV reactivation. We evaluated the outcomes of patients who received HCT-apheresis products comparing the impact of PTCy on lymphocyte recovery, CMV reactivation and CMV-specific CD8+ T cell recovery following haplo-identical (HAPLO), matched unrelated donor (MUD), and mismatched unrelated donor (mMUD) grafts vs. with conventional matched related donor (MRD) graft recipients. Methods: We examined 26 patients (median age, 49 years; range, 20-72 years) with advanced hematologic malignancies; n=5 (HAPLO); 6 (MRD); 15 (MUD). All patients received myeloablative conditioning regimens that was either busulfan- or total body irradiation (TBI)-based. PTCy (50 mg/kg/day) was administered on days +3 and +4 following HAPLO and on day +3 following MUD/mMUD transplant. Peripheral blood lymphocyte reconstitution and frequency of circulating CMV-directed CD8+ T cells was assessed (day ± 10 days) on post-transplant days +30, +60, and +90. Circulating anti-CMV T cell frequency was assessed using a phycoerythrin-tagged MHC dextramer against HLA-specific CMV pp65, IE-1, or pp50 peptides (Immudex; Copenhagen, DK) in combination with Tru-Count¨ tubes and fluorescent-labeled monoclonal antibodies against CD3, CD8, CD4, CD16/56, and CD19 (BD Biosciences; San Jose, CA). Anti-CMV CD8+ T cell immunity was defined as a CMV-dextramer (CMV/DEX) positive count of ≥7cells/ml. CMV reactivation was defined as a serologic titer of >500IU/mL. All patients with CMV reactivation received ganciclovir therapy until CMV titer became negative. Results: Day +30 total T cell recovery was significantly faster in MRD than CY-treated recipients (p=0.015) due principally to more robust CD8+ T cell recovery. CD4 T cell recovery remained below normal range in all groups through day +100. NK cells recovered to normal numbers at day +28 in all groups. Neither PTCy nor donor source significantly impacted the percentage of patients that recovered anti-CMV CD8+ T cells at each time interval (p = 0.8232). Excluding donors (D) and recipients (R) that were both negative, CMV/DEX+ T cells recovery was >7/mL in 4/5 MRD, 7/14 MUD, and 3/5 HAPLO by day +100. Among MRD recipients either D+ or R+ (n=5), 2 patients showed CMV reactivation within 40 days of transplant that was associated with <7 CMV/DEX+ T cells on day +30. Subsequent high (>90/mL) CMV/DEX T cell response in one patient shortened the duration of viremia to 10 days (vs. 16 days with poor responder) and 3 patients showed no CMV reactivation and a high CMV/DEX+ T cell response by day +60. For MUD CMV D+ and/or R+ recipients (n=14), 3 showed CMV reactivation within 50 days of transplant. All 3 patients had suboptimal CMV/DEX T cell response on day +30. Robust CMV/DEX+ T cell response on day +60 predicted shorter duration of viremia (20 days vs. average of 32 days). For HAPLO CMV D+ and/or R+ (n=5) recipients, 4 experienced CMV reactivation within 50 days of transplant. All patients had a <7 CMV/DEX+ T cells/mL +30. Robust CMV/DEX+ T cell response by day +60 was associated with shorter duration of viremia (range 7-21 days), while one patient with <7/mL CMV/DEX+ T cells had continued CMV viremia for 36 days. Conclusion: In this preliminary analysis, neither PTCy nor donor source significantly impacted the percentage of patients that recovered anti-CMV CD8+ T cells at each time interval. A weak CMV/DEX+ response (<7 cells/mL) on day +30 was consistent with increased risk of CMV reactivation (viremia) in all groups. A CMV/DEX+ T cell count ≥7 cells/mL was not immediately protective against CMV reactivation, but higher counts were associated with a shortened duration of viremia while on antiviral therapy. Conversely, subnormal counts were associated with a longer duration of viremia. This interim analysis suggests that CMV/DEX+ T cell enumeration is a useful biologic correlate for determining clinical response to antiviral therapy, and that donor-derived CMV specific T cell immunity is not further compromised with following PTCy in alternative donor HCT. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 135 ◽  
pp. S71
Author(s):  
Eric Marietta ◽  
David Luckey ◽  
Chella David ◽  
Joseph Murray
Keyword(s):  
T Cell ◽  

2022 ◽  
Vol 12 ◽  
Author(s):  
You-Seok Hyun ◽  
Yong-Hun Lee ◽  
Hyeong-A Jo ◽  
In-Cheol Baek ◽  
Sun-Mi Kim ◽  
...  

Common human coronaviruses have been circulating undiagnosed worldwide. These common human coronaviruses share partial sequence homology with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therefore, T cells specific to human coronaviruses are also cross-reactive with SARS-CoV-2 antigens. Herein, we defined CD4+ T cell responses that were cross-reactive with SARS-CoV-2 antigens in blood collected in 2016–2018 from healthy donors at the single allele level using artificial antigen-presenting cells (aAPC) expressing a single HLA class II allotype. We assessed the allotype-restricted responses in the 42 individuals using the aAPCs matched 22 HLA-DR alleles, 19 HLA-DQ alleles, and 13 HLA-DP alleles. The response restricted by the HLA-DR locus showed the highest magnitude, and that by HLA-DP locus was higher than that by HLA-DQ locus. Since two alleles of HLA-DR, -DQ, and -DP loci are expressed co-dominantly in an individual, six different HLA class II allotypes can be used to the cross-reactive T cell response. Of the 16 individuals who showed a dominant T cell response, five, one, and ten showed a dominant response by a single allotype of HLA-DR, -DQ, and -DP, respectively. The single allotype-restricted T cells responded to only one antigen in the five individuals and all the spike, membrane, and nucleocapsid proteins in the six individuals. In individuals heterozygous for the HLA-DPA and HLA-DPB loci, four combinations of HLA-DP can be expressed, but only one combination showed a dominant response. These findings demonstrate that cross-reactive T cells to SARS-CoV-2 respond with single-allotype dominance.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2014-2014
Author(s):  
Cornelis A.M. van Bergen ◽  
Simone A.P. Van Luxemburg-Heijs ◽  
Matthijs Eefting ◽  
Maria W. Honders ◽  
Inge Jedema ◽  
...  

Abstract Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) can be a curative treatment for patients with hematological malignancies due to the capacity of allo-reactive donor derived T cells to mediate a curative potent graft versus leukemia (GVL) effect. However, associated acute graft versus host disease (GVHD) remains a major risk. To study the role of CD8+ T cells in GVL reactivity and GVHD, we selected patients who responded to DLI (without preceding cytoreductive treatment) for recurrent disease or incomplete donor chimerism after alloSCT. The patients were grouped according to absence (7 patients) or presence (6 patients) of GVHD. To quantify the number of circulating activated CD8+ T cells before DLI and at the time of disease regression or conversion to full donor chimerism we measured the frequencies of CD8+ HLA-DR+ T cells in peripheral blood samples by flowcytometry. Before DLI, highly variable numbers of CD8+ HLA-DR+ T cells were found (37.8 ± 42.9 x106/L), that significantly increased after DLI (309±473 x106/L, p<0.005), demonstrating involvement of CD8+ HLA-DR+ T cells in immune responses after DLI. To determine the specificity and functional avidity of the CD8+ HLA-DR+ T cells, these cells were isolated using flowcytometric cell sorting and clonally expanded. From a total of 30 samples, on average 225 T cell clones per sample were obtained and tested for recognition of patient and donor derived EBV-LCL, CD40L stimulated B cells (CD40L-B cells) and monocyte derived dendritic cells (monoDC). Surprisingly, in many samples from both patient cohorts high percentages of clones recognizing EBV-LCL derived from both patient and donor but not recognizing CD40L-B cells and monoDC were found. These T cells may be involved in anti-EBV responses irrespective of the presence of a GVL effect or GVHD. To investigate whether the magnitude of the allo-immune response was different in patients with or without GVHD coinciding the GVL effect, we compared the frequencies of allo-reactive T cell clones in samples from both patient groups. Significantly lower percentages of allo-reactive T cell clones were found in patients without GVHD as compared to patients with GVHD (5.1 ± 7.0% versus 32.5 ± 20.0% respectively, p<0.01), showing that coinciding GVHD is associated with an increased magnitude of the allo-reactive T cell response. Per patient, we determined the number of unique antigens targeted by the isolated T cell clones by characterizing the targeted MiHA using whole genome association scanning. In line with the lower total number of allo-reactive T cells, a lower number of unique MiHA was targeted in patients without GVHD (2.7±3.5) as compared to patients with GVHD (10.2±5.8, p=0.015). To determine whether occurrence of GVHD could be explained by the tissue specificity and functional avidity of the allo-reactive T cell response after DLI, we tested the T cell clones obtained from both patient cohorts for recognition of fibroblasts (FB) derived from skin biopsies of the patient. To mimic pro-inflammatory conditions, FB were pretreated for 4 days with 100 IU/ml IFN-γ. Recognition of untreated FB was exclusively mediated by T cell clones obtained from patients with GVHD, whereas recognition of IFN-γ pretreated FB was found for clones isolated from patients with or without coinciding GVHD. In addition, several T cell clones isolated from patients without GVHD were found to be directed against MiHA encoded by genes with a broad expression profile in non-hematopoietic cells comprising FB, despite absence of FB recognition under non-inflammatory conditions. This suggests that in addition to the tissue expression profile of the MiHA other factors, comprising the local inflammatory milieu, play a role in the risk of developing GVHD. In conclusion, our data show a strong correlation between the magnitude and the functional avidity of the allo-reactive CD8+ T cell response and the occurrence of GVHD after DLI. We hypothesize that the limited production of pro-inflammatory cytokines due to the moderate magnitude of the immune response in patients mounting a GVL response without coinciding GVHD reactivity may have prevented the induction of GVHD by the lower avidity allo-reactive T cells, that under pro inflammatory conditions can mediate GVHD by recognition of normal non-hematopoietic cells of the patient. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 181 (1) ◽  
pp. 431-439 ◽  
Author(s):  
Xiao-Fei Wang ◽  
Jerome Kerzerho ◽  
Olivier Adotevi ◽  
Hélène Nuyttens ◽  
Cecile Badoual ◽  
...  

1995 ◽  
Vol 31 ◽  
pp. S29
Author(s):  
M. Heike ◽  
I. Schlaak ◽  
H. Schulze-Bergkamen ◽  
W. Herr ◽  
V. Kohlhase ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2895-2895
Author(s):  
Beatrice Clemenceau ◽  
Thierry Guillaume ◽  
Marianne Coste-Burel ◽  
Pierre Peterlin ◽  
Alice Garnier ◽  
...  

Abstract Introduction: Virus-specific humoral and cellular immune responses act synergistically to protect from viral infection. In our recent observational monocentric study of 117 hematopoietic stem cell adult recipients, we found that 54% and 83 % patients achieved a humoral response after two doses of BNT162b2 anti-SARS-CoV-2 messenger RNA vaccine (Pfizer BioNTech), respectively. Here, we evaluated the T-cell response against the SARS-Cov-2 spike protein after two doses of BNT162b2 vaccine in some allografted patients from the same cohort and compared these results to those from healthy controls. Methods: To quantify SARS-CoV-2 specific T-cells, we used an INFg ELISpot assay that detects these cells after activation of peripheral blood mononuclear cells (PBMC) with 3 peptide pools covering the whole protein sequence of the spike glycoprotein (Prot _S1; _S+ and _S PepTivator peptide pools, Miltenyi Biotec, Bergisch Gladbach, Germany). EBV and CMV specific T-cells were also quantified as controls. The immunophenotype of PBMC was determined by flow cytometry, after dead cell exclusion, with monoclonal antibodies identifying the following surface antigens: CD45, CD3, CD14, CD19 and HLA-DR. The frequencies of spot-forming units (SFU) were reported as per 10 6 CD3+ T-cells. Results: Samples from 46 allografted patients (acute myeloblastic leukemia, N=27, myelodysplastic syndrome, N=19) and 16 healthy controls were available. Characteristics of the population are given in Table 1. All fully vaccinated healthy donors became seropositive and developed a positive T-cell response to spike peptide pools even though variable frequencies were observed. The median response was 195 SFU/10 6 T-cells. By comparison, the frequency of EBV-specific T-cells was 774 SFU/10 6 T-cells (Figure 1). In the group of patients, 78% (n=36/46) had achieved a humoral response after the second dose of vaccine. Among these humoral responders (HR), 89% (n=32/36) also had a positive anti-spike T-cell response with variable frequencies (median =119 SFU/10 6 T-cells. For 8 patients, this T cell response was higher than that of controls (&gt;800 SFU/10 6 T-cells) (Figure 1), which is equivalent to more than 1 specific T-cell per microliter of blood (Figure 2). The humoral responders (HR) who did not develop a T-cell response (11%, n=4/36) had a median time from transplant to vaccination of 523 days compared to 1032 days for cellular responder patients. Among the 10 patients who were non humoral responders (NHR) (22%, n=10/46), 4 (40%) developed a cellular immunity, including one with a very high T cell response (1333 SFU/10 6 T-cells). As expected, the absence of humoral response was observed in patients who were within one year of the transplant. Of note, somehow unexpectedly, patients often presented a high frequency of EBV- and CMV-specific T cells (Figures 1 & 2). As expected, PBMC immunophenotypic analysis revealed that CD3+ frequencies were lower in patients compared to those of controls but were similar between HR and NHR. NHR had very low frequencies of B cells and interestingly, they had an elevated frequency of CD14+ monocytes with low/neg HLA-DR expression potentially corresponding to myeloid-derived suppressor cells (MDSCs) (Figure 3). Conclusion: In this series, 89% of allografted patients who developed an anti-spike humoral response also presented an anti-SARS-Cov-2 cellular immunity. Interestingly, anti-SARS-Cov-2 specific T-cells could be detected in 40% of NHR patients. Although a larger group of patients is required to confirm these results, it remains to be determined whether this T-cell response is protective against SARS-Cov-2 infection as previously demonstrated for CMV (Litjens et al, 2017). Finally, the role of potential immunosuppressive MDSCs must be explored in patients who develop no sign of T-cell response after vaccination. Figure 1 Figure 1. Disclosures Moreau: Oncopeptides: Honoraria; Celgene BMS: Honoraria; Sanofi: Honoraria; Abbvie: Honoraria; Janssen: Honoraria; Amgen: Honoraria.


2022 ◽  
Author(s):  
Paolo Corradini ◽  
Chiara Agrati ◽  
Giovanni Apolone ◽  
Alberto Mantovani ◽  
Diana Giannarelli ◽  
...  

Background: Patients with solid or hematological tumors, neurological and immune-inflammatory disorders represent potentially fragile subjects with increased risk to experience severe COVID-19 and inadequate response to SARS-CoV2 vaccination. Methods: We designed a prospective Italian multicentric study to assess humoral and T-cell response to SARS-CoV2 vaccination in patients (n=378) with solid tumors (ST), hematological malignancies (HM), neurological (ND) and immuno-rheumatological diseases (ID). The immunogenicity of primary vaccination schedule and of the booster dose were analyzed. Results: Overall, patient seroconversion rate after two doses was 62.1%. A significant lower rate was observed in HM (52.4%) and ID (51.9%) patients compared to ST (95.6%) and ND (70.7%); a lower median level of antibodies was detected in HM and ID versus the others (p<0.0001). A similar rate of patients with a positive SARS-CoV2 T-cell response was observed in all disease groups, with a higher level observed in the ND group. The booster dose improved humoral responses in all disease groups, although with a lower response in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, the independent predictors for seroconversion were disease subgroups, type of therapies and age. Notably, the ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (p<0.0001), but had no effects on the T-cell responses. Conclusions: Immunosuppressive treatment more than disease type per se is a risk factor for low humoral response after vaccination. The booster dose can improve both humoral and T-cell response.


Sign in / Sign up

Export Citation Format

Share Document