scholarly journals Advances in the Detection of Toxic Algae Using Electrochemical Biosensors

Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 207
Author(s):  
Linda K. Medlin ◽  
Maria Gamella ◽  
Gerardo Mengs ◽  
Verónica Serafín ◽  
Susana Campuzano ◽  
...  

Harmful algal blooms (HABs) are more frequent as climate changes and tropical toxic species move northward, especially along the Iberian Peninsula, a rich aquaculture area. Monitoring programs, detecting the presence of toxic algae before they bloom, are of paramount importance to protect ecosystems, aquaculture, human health and local economies. Rapid, reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention as an alternative to the legally required but impractical microscopic counting-based techniques. Our electrochemical detection system has improved, moving from conventional sandwich hybridization protocols using different redox mediators and signal probes with different labels to a novel strategy involving the recognition of RNA heteroduplexes by antibodies further labelled with bacterial antibody binding proteins conjugated with multiple enzyme molecules. Each change has increased sensitivity. A 150-fold signal increase has been produced with our newest protocol using magnetic microbeads (MBs) and amperometric detection at screen-printed carbon electrodes (SPCEs) to detect the target RNA of toxic species. We can detect as few as 10 cells L−1 for some species by using a fast (~2 h), simple (PCR-free) and cheap methodology (~2 EUR/determination) that will allow this methodology to be integrated into easy-to-use portable systems.

2018 ◽  
Vol 6 (4) ◽  
pp. 147 ◽  
Author(s):  
Marta Lopes ◽  
Ana Amorim ◽  
Cecília Calado ◽  
Pedro Reis Costa

Harmful algal blooms are responsible worldwide for the contamination of fishery resources, with potential impacts on seafood safety and public health. Most coastal countries rely on an intense monitoring program for the surveillance of toxic algae occurrence and shellfish contamination. The present study investigates the use of near infrared (NIR) spectroscopy for the rapid in situ determination of cell concentrations of toxic algae in seawater. The paralytic shellfish poisoning (PSP) toxin-producing dinoflagellate Gymnodinium catenatum was selected for this study. The spectral modeling by partial least squares (PLS) regression based on the recorded NIR spectra enabled the building of highly accurate (R2 = 0.92) models for cell abundance. The models also provided a good correlation between toxins measured by the conventional methods (high-performance liquid chromatography with fluorescence detection (HPLC-FLD)) and the levels predicted by the PLS/NIR models. This study represents the first necessary step in investigating the potential of application of NIR spectroscopy for algae bloom detection and alerting.


Author(s):  
Hamed Mohammed Al Gheilani ◽  
Kazumi Matsuoka ◽  
Abdulaziz Yahya AlKindi ◽  
Shehla Amer ◽  
Colin Waring

Red tide, one of the harmful algal blooms (HABs) is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September), recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March). HABs may have contributed to hypoxia and/or other negative ecological impacts. 


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1473
Author(s):  
Saber Moradinejad ◽  
Dries Vandamme ◽  
Caitlin M. Glover ◽  
Tahere Zadfathollah Seighalani ◽  
Arash Zamyadi

The co-occurrence of non-toxic phytoplankton alongside cyanobacteria adds to the challenge of treating source waters with harmful algal blooms. The non-toxic species consume the oxidant and, thereby, reduce the efficacy of oxidation of both the extracellular and intracellular cyanotoxins. In this work, a 3D printed mini-hydrocyclone was used to separate a mixture of non-toxic green algae, Scenedesmus obliquus, from a toxic species of cyanobacteria, Microcystis aeruginosa. When water is pumped through the mini-hydrocyclone, cells exit through an overflow or underflow port depending on their size, shape, and density relative to the other cells and particles in the water matrix. The overflow port contains the cells that are smaller and less dense since these particles move toward the center of the hydrocyclone. In this work, the majority (>93%) of Microcystis cells were found in the overflow while the underflow contained primarily the Scenedesmus (>80%). This level of separation efficiency was maintained over the 30-min experiment and the majority of both cells (>86%) remained viable following the separation, which indicates that the pumping combined with forces exerted within the mini-hydrocyclone were not sufficient to cause cell death. The impact of free chlorine on the cells both pre-separation and post-separation was evaluated at two doses (1 and 2 mg/L). After separation, the overflow, which contained primarily Microcystis, had at least a 24% reduction in the free chlorine decay rate as compared to the feed water, which contained both species. This reduction in chlorine consumption shows that the cells separated via mini-hydrocyclone would likely require lower doses of oxidant to produce a similar level of degradation of the cyanotoxins present in either the extracellular or intracellular form. However, future work should be undertaken to evaluate this effect in natural bloom samples.


2006 ◽  
Vol 72 (9) ◽  
pp. 5742-5749 ◽  
Author(s):  
Soohyoun Ahn ◽  
David M. Kulis ◽  
Deana L. Erdner ◽  
Donald M. Anderson ◽  
David R. Walt

ABSTRACT Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 μm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 525
Author(s):  
Hanbin Park ◽  
Gahyeon Kim ◽  
Yoseph Seo ◽  
Yejin Yoon ◽  
Junhong Min ◽  
...  

The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography–mass spectrometry (LC–MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.


2021 ◽  
Vol 9 (1) ◽  
pp. 51
Author(s):  
Huijiao Yang ◽  
Zhangxi Hu ◽  
Ying Zhong Tang

As the number of mixotrophic protists has been increasingly documented, “mixoplankton”, a third category separated from the traditional categorization of plankton into “phytoplankton” and “zooplankton”, has become a new paradigm and research hotspot in aquatic plankton ecology. While species of dinoflagellates are a dominant group among all recorded members of mixoplankton, the trophic modes of Karlodinium, a genus constituted of cosmopolitan toxic species, were reviewed due to their representative features as mixoplankton and harmful algal blooms (HABs)-causing dinoflagellates. Among at least 15 reported species in the genus, three have been intensively studied for their trophic modes, and all found to be phagotrophic. Their phagotrophy exhibits multiple characteristics: (1) omnivority, i.e., they can ingest a variety of preys in many forms; (2) flexibility in phagotrophic mechanisms, i.e., they can ingest small preys by direct engulfment and much bigger preys by myzocytosis using a peduncle; (3) cannibalism, i.e., species including at least K. veneficum can ingest the dead cells of their own species. However, for some recently described and barely studied species, their tropical modes still need to be investigated further regarding all of the above-mentioned aspects. Mixotrophy of Karlodinium plays a significant role in the population dynamics and the formation of HABs in many ways, which thus deserves further investigation in the aspects of physiological ecology, environmental triggers (e.g., levels of inorganic nutrients and/or presence of preys), energetics, molecular (genes and gene expression regulations) and biochemical (e.g., relevant enzymes and signal molecules) bases, origins, and evaluation of the advantages of being a phagotroph.


Shore & Beach ◽  
2020 ◽  
pp. 34-43
Author(s):  
Nicole Elko ◽  
Tiffany Roberts Briggs

In partnership with the U.S. Geological Survey Coastal and Marine Hazards and Resources Program (USGS CMHRP) and the U.S. Coastal Research Program (USCRP), the American Shore and Beach Preservation Association (ASBPA) has identified coastal stakeholders’ top coastal management challenges. Informed by two annual surveys, a multiple-choice online poll was conducted in 2019 to evaluate stakeholders’ most pressing problems and needs, including those they felt most ill-equipped to deal with in their day-to-day duties and which tools they most need to address these challenges. The survey also explored where users find technical information and what is missing. From these results, USGS CMHRP, USCRP, ASBPA, and other partners aim to identify research needs that will inform appropriate investments in useful science, tools, and resources to address today’s most pressing coastal challenges. The 15-question survey yielded 134 complete responses with an 80% completion rate from coastal stakeholders such as local community representatives and their industry consultants, state and federal agency representatives, and academics. Respondents from the East, Gulf, West, and Great Lakes coasts, as well as Alaska and Hawaii, were represented. Overall, the prioritized coastal management challenges identified by the survey were: Deteriorating ecosystems leading to reduced (environmental, recreational, economic, storm buffer) functionality, Increasing storminess due to climate change (i.e. more frequent and intense impacts), Coastal flooding, both Sea level rise and associated flooding (e.g. nuisance flooding, king tides), and Combined effects of rainfall and surge on urban flooding (i.e. episodic, short-term), Chronic beach erosion (i.e. high/increasing long-term erosion rates), and Coastal water quality, including harmful algal blooms (e.g. red tide, sargassum). A careful, systematic, and interdisciplinary approach should direct efforts to identify specific research needed to tackle these challenges. A notable shift in priorities from erosion to water-related challenges was recorded from respondents with organizations initially formed for beachfront management. In addition, affiliation-specific and regional responses varied, such as Floridians concern more with harmful algal blooms than any other human and ecosystem health related challenge. The most common need for additional coastal management tools and strategies related to adaptive coastal management to maintain community resilience and continuous storm barriers (dunes, structures), as the top long-term and extreme event needs, respectively. In response to questions about missing information that agencies can provide, respondents frequently mentioned up-to-date data on coastal systems and solutions to challenges as more important than additional tools.


Harmful Algae ◽  
2021 ◽  
pp. 101975
Author(s):  
Donald M. Anderson ◽  
Elizabeth Fensin ◽  
Christopher J. Gobler ◽  
Alicia E. Hoeglund ◽  
Katherine A. Hubbard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document