scholarly journals Cortical Beta Oscillatory Activity Evoked during Reactive Balance Recovery Scales with Perturbation Difficulty and Individual Balance Ability

2020 ◽  
Vol 10 (11) ◽  
pp. 860
Author(s):  
Nina J. Ghosn ◽  
Jacqueline A. Palmer ◽  
Michael R. Borich ◽  
Lena H. Ting ◽  
Aiden M. Payne

Cortical beta oscillations (13–30 Hz) reflect sensorimotor processing, but are not well understood in balance recovery. We hypothesized that sensorimotor cortical activity would increase under challenging balance conditions. We predicted greater beta power when balance was challenged, either by more difficult perturbations or by lower balance ability. In 19 young adults, we measured beta power over motor cortical areas (electroencephalography, Cz electrode) during three magnitudes of backward support -surface translations. Peak beta power was measured during early (50–150 ms), late (150–250 ms), and overall (0–400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power. An ANOVA was used to compare peak beta power across perturbation magnitudes in each time bin. We further tested the association between perturbation-evoked beta power and individual balance ability measured in a challenging beam walking task. Beta power increased ~50 ms after perturbation, and to a greater extent in larger perturbations. Lower individual balance ability was associated with greater beta power in only the late (150–250 ms) time bin. These findings demonstrate greater sensorimotor cortical engagement under more challenging balance conditions, which may provide a biomarker for reduced automaticity in balance control that could be used in populations with neurological impairments.

2020 ◽  
Author(s):  
Nina J. Ghosn ◽  
Jacqueline A. Palmer ◽  
Michael R. Borich ◽  
Lena H. Ting ◽  
Aiden M. Payne

I.AbstractCortical beta oscillations (13-30 Hz) reflect sensorimotor cortical activity, but have not been fully investigated in balance recovery behavior. We hypothesized that more challenging balance conditions would lead to greater recruitment of cortical sensorimotor brain regions for balance recovery. We predicted that beta power would be enhanced when balance recovery is more challenging, either due to more difficult perturbations or due to lower intrinsic balance ability. In 19 young adults, we measured beta power evoked over motor cortical areas (Cz electrode) during 3 magnitudes of backward support-surface translational perturbations using electroencephalography. Peak beta power was measured during early (50-150 ms), late (150-250 ms), and overall (0-400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power and agonist and antagonist ankle muscle activity. We further assessed the relationship between individual balance ability measured in a challenging beam walking task and perturbation-evoked beta power within each time bin. In balance perturbations, cortical beta power increased ∼50 ms after perturbation onset, demonstrating greater increases with increasing perturbation magnitude. Balance ability was negatively associated with peak beta power in only the late (150-250 ms) time bin, with higher beta power in individuals who performed worse in the beam walking task. Additionally, the time course of cortical beta power followed a similar waveform as the evoked muscle activity, suggesting these evoked responses may be initially evoked by shared underlying mechanisms. These findings support the active role of sensorimotor cortex in balance recovery behavior, with greater recruitment of cortical resources under more challenging balance conditions. Cortical beta power may therefore provide a biomarker for engagement of sensorimotor cortical resources during reactive balance recovery and reflect the individual level of balance challenge.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Aiden M. Payne ◽  
Lena H. Ting ◽  
Michael R. Borich

Heightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical mechanisms for balance control, particularly in relation to balance function, remain unclear. Here we aimed to investigate motor cortical activity in relation to the level of balance challenge presented during reactive balance recovery and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions in relation to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater motor cortical beta power evoked following standing balance perturbations demonstrated lower general clinical balance function. Individual older adults demonstrated a wide range of cortical responses during balance reactions at the same perturbation magnitude, showing no group-level change in prefrontal- or somatosensory-motor coherence in response to perturbations. However, older adults with the highest prefrontal-motor coherence during the post-perturbation, but not pre-perturbation, period showed greater cognitive dual-task interference (DTI) and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-motor cortical networks in distinct aspects of balance control involving response inhibition of reactive stepping in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall prevention with aging.


2019 ◽  
Vol 31 (6) ◽  
pp. 855-873 ◽  
Author(s):  
Diana Omigie ◽  
Marcus Pearce ◽  
Katia Lehongre ◽  
Dominique Hasboun ◽  
Vincent Navarro ◽  
...  

Prediction is held to be a fundamental process underpinning perception, action, and cognition. To examine the time course of prediction error signaling, we recorded intracranial EEG activity from nine presurgical epileptic patients while they listened to melodies whose information theoretical predictability had been characterized using a computational model. We examined oscillatory activity in the superior temporal gyrus (STG), the middle temporal gyrus (MTG), and the pars orbitalis of the inferior frontal gyrus, lateral cortical areas previously implicated in auditory predictive processing. We also examined activity in anterior cingulate gyrus (ACG), insula, and amygdala to determine whether signatures of prediction error signaling may also be observable in these subcortical areas. Our results demonstrate that the information content (a measure of unexpectedness) of musical notes modulates the amplitude of low-frequency oscillatory activity (theta to beta power) in bilateral STG and right MTG from within 100 and 200 msec of note onset, respectively. Our results also show this cortical activity to be accompanied by low-frequency oscillatory modulation in ACG and insula—areas previously associated with mediating physiological arousal. Finally, we showed that modulation of low-frequency activity is followed by that of high-frequency (gamma) power from approximately 200 msec in the STG, between 300 and 400 msec in the left insula, and between 400 and 500 msec in the ACG. We discuss these results with respect to models of neural processing that emphasize gamma activity as an index of prediction error signaling and highlight the usefulness of musical stimuli in revealing the wide-reaching neural consequences of predictive processing.


2021 ◽  
Vol 13 ◽  
Author(s):  
Aiden M. Payne ◽  
Jacqueline A. Palmer ◽  
J. Lucas McKay ◽  
Lena H. Ting

The mechanisms underlying associations between cognitive set shifting impairments and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly adjust behavior to changes in task rules or contexts, which could be involved in flexibly adjusting balance recovery behavior to different contexts, such as the direction the body is falling. Prior studies found associations between cognitive set shifting impairments and severe balance dysfunction in populations experiencing frequent falls. The objective of this study was to test whether cognitive set shifting ability is expressed in successful balance recovery behavior in older adults with high clinical balance ability (N = 19, 71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail Making Test and clinical balance ability using the miniBESTest. For most participants, cognitive set shifting performance (Trail Making Test B-A = 37 ± 20 s) was faster than normative averages (46 s for comparable age and education levels), and balance ability scores (miniBESTest = 25 ± 2/28) were above the threshold for fall risk (23 for people between 70 and 80 years). Reactive balance recovery in response to support-surface translations in anterior and posterior directions was assessed in terms of body motion, muscle activity, and brain activity. Across participants, lower cognitive set shifting ability was associated with smaller peak center of mass displacement during balance recovery, lower directional specificity of late phase balance-correcting muscle activity (i.e., greater antagonist muscle activity 200–300 ms after perturbation onset), and larger cortical N1 responses (100–200 ms). None of these measures were associated with clinical balance ability. Our results suggest that cognitive set shifting ability is expressed in balance recovery behavior even in the absence of profound clinical balance disability. Specifically, our results suggest that lower flexibility in cognitive task performance is associated with lower ability to incorporate the directional context into the cortically mediated later phase of the motor response. The resulting antagonist activity and stiffer balance behavior may help explain associations between cognitive set shifting impairments and frequent falls.


2021 ◽  
Author(s):  
Aiden Payne ◽  
Jacqueline A Palmer ◽  
J Lucas McKay ◽  
Lena H Ting

The mechanisms underlying associations between cognitive set shifting impairments and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly adjust behavior to changes in task rules or contexts, which could be involved in flexibly adjusting balance recovery behavior to different contexts, such as the direction the body is falling. Prior studies found associations between cognitive set shifting impairments and severe balance dysfunction in populations experiencing frequent falls. The objective of this study was to test whether cognitive set shifting ability is expressed in successful balance recovery behavior in older adults with high clinical balance ability (N=19, 71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail Making Test and clinical balance ability using the miniBESTest. For most participants, cognitive set shifting performance (Trail Making Test B-A = 37 ± 20s) was faster than normative averages (46s for comparable age and education levels), and balance ability scores (miniBESTest = 25 ± 2 / 28) were above the threshold for fall risk (23 for people between 70-80 years). Reactive balance recovery in response to support-surface translations in anterior and posterior directions was assessed in terms of body motion, muscle activity, and brain activity. Across participants, lower cognitive set shifting ability was associated with smaller peak center of mass displacement during balance recovery, lower directional specificity of late phase balance-correcting muscle activity (i.e., greater antagonist muscle activity 200-300ms after perturbation onset), and larger cortical N1 responses (100-200ms). None of these measures were associated with clinical balance ability. Our results suggest that cognitive set shifting ability is expressed in balance recovery behavior even in the absence of profound clinical balance disability. Specifically, our results suggest that lower flexibility in cognitive task performance is associated with lower ability to incorporate the directional context into the cortically-mediated later phase of the motor response. The resulting antagonist activity and stiffer balance behavior may help explain associations between cognitive set shifting impairments and frequent falls.


2021 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Aiden M. Payne ◽  
Lena H. Ting ◽  
Michael R. Borich

AbstractHeightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical dynamics of balance control, particularly in relationship to balance function, is unclear. Here we aimed to investigate motor cortical activity in relationship to the level of balance challenge presented during reactive balance recovery, and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater somatosensory-motor beta coherence at baseline and lower beta power evoked over motor regions following perturbations demonstrated higher general clinical balance function. At the group-level, beta coherence between prefrontal-motor regions reduced during balance reactions. Older adults with the highest post-perturbation prefrontal-motor coherence showed greater cognitive dual-task interference and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-and somatosensory-motor cortical networks in different aspects of balance control in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall-prevention with aging.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 101
Author(s):  
Lara A. Thompson ◽  
Mehdi Badache ◽  
Joao Augusto Renno Brusamolin ◽  
Marzieh Savadkoohi ◽  
Jelani Guise ◽  
...  

For the rapidly growing aging demographic worldwide, robotic training methods could be impactful towards improving balance critical for everyday life. Here, we investigated the hypothesis that non-bodyweight supportive (nBWS) overground robotic balance training would lead to improvements in balance performance and balance confidence in older adults. Sixteen healthy older participants (69.7 ± 6.7 years old) were trained while donning a harness from a distinctive NaviGAITor robotic system. A control group of 11 healthy participants (68.7 ± 5.0 years old) underwent the same training but without the robotic system. Training included 6 weeks of standing and walking tasks while modifying: (1) sensory information (i.e., with and without vision (eyes-open/closed), with more and fewer support surface cues (hard or foam surfaces)) and (2) base-of-support (wide, tandem and single-leg standing exercises). Prior to and post-training, balance ability and balance confidence were assessed via the balance error scoring system (BESS) and the Activities specific Balance Confidence (ABC) scale, respectively. Encouragingly, results showed that balance ability improved (i.e., BESS errors significantly decreased), particularly in the nBWS group, across nearly all test conditions. This result serves as an indication that robotic training has an impact on improving balance for healthy aging individuals.


Sign in / Sign up

Export Citation Format

Share Document