scholarly journals A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals

2021 ◽  
Vol 11 (10) ◽  
pp. 1274
Author(s):  
Xiangyu Qian ◽  
Ye Qiu ◽  
Qingzu He ◽  
Yuer Lu ◽  
Hai Lin ◽  
...  

Multiple types of sleep arousal account for a large proportion of the causes of sleep disorders. The detection of sleep arousals is very important for diagnosing sleep disorders and reducing the risk of further complications including heart disease and cognitive impairment. Sleep arousal scoring is manually completed by sleep experts by checking the recordings of several periods of sleep polysomnography (PSG), which is a time-consuming and tedious work. Therefore, the development of efficient, fast, and reliable automatic sleep arousal detection system from PSG may provide powerful help for clinicians. This paper reviews the automatic arousal detection methods in recent years, which are based on statistical rules and deep learning methods. For statistical detection methods, three important processes are typically involved, including preprocessing, feature extraction and classifier selection. For deep learning methods, different models are discussed by now, including convolution neural network (CNN), recurrent neural network (RNN), long-term and short-term memory neural network (LSTM), residual neural network (ResNet), and the combinations of these neural networks. The prediction results of these neural network models are close to the judgments of human experts, and these methods have shown robust generalization capabilities on different data sets. Therefore, we conclude that the deep neural network will be the main research method of automatic arousal detection in the future.

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 898 ◽  
Author(s):  
Suhwan Ji ◽  
Jongmin Kim ◽  
Hyeonseung Im

Bitcoin has recently received a lot of attention from the media and the public due to its recent price surge and crash. Correspondingly, many researchers have investigated various factors that affect the Bitcoin price and the patterns behind its fluctuations, in particular, using various machine learning methods. In this paper, we study and compare various state-of-the-art deep learning methods such as a deep neural network (DNN), a long short-term memory (LSTM) model, a convolutional neural network, a deep residual network, and their combinations for Bitcoin price prediction. Experimental results showed that although LSTM-based prediction models slightly outperformed the other prediction models for Bitcoin price prediction (regression), DNN-based models performed the best for price ups and downs prediction (classification). In addition, a simple profitability analysis showed that classification models were more effective than regression models for algorithmic trading. Overall, the performances of the proposed deep learning-based prediction models were comparable.


Forecasting ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1-25
Author(s):  
Thabang Mathonsi ◽  
Terence L. van Zyl

Hybrid methods have been shown to outperform pure statistical and pure deep learning methods at forecasting tasks and quantifying the associated uncertainty with those forecasts (prediction intervals). One example is Exponential Smoothing Recurrent Neural Network (ES-RNN), a hybrid between a statistical forecasting model and a recurrent neural network variant. ES-RNN achieves a 9.4% improvement in absolute error in the Makridakis-4 Forecasting Competition. This improvement and similar outperformance from other hybrid models have primarily been demonstrated only on univariate datasets. Difficulties with applying hybrid forecast methods to multivariate data include (i) the high computational cost involved in hyperparameter tuning for models that are not parsimonious, (ii) challenges associated with auto-correlation inherent in the data, as well as (iii) complex dependency (cross-correlation) between the covariates that may be hard to capture. This paper presents Multivariate Exponential Smoothing Long Short Term Memory (MES-LSTM), a generalized multivariate extension to ES-RNN, that overcomes these challenges. MES-LSTM utilizes a vectorized implementation. We test MES-LSTM on several aggregated coronavirus disease of 2019 (COVID-19) morbidity datasets and find our hybrid approach shows consistent, significant improvement over pure statistical and deep learning methods at forecast accuracy and prediction interval construction.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2019 ◽  
Vol 11 (20) ◽  
pp. 2363 ◽  
Author(s):  
Wenchao Qi ◽  
Xia Zhang ◽  
Nan Wang ◽  
Mao Zhang ◽  
Yi Cen

Deep learning methods used for hyperspectral image (HSI) classification often achieve greater accuracy than traditional algorithms but require large numbers of training epochs. To simplify model structures and reduce their training epochs, an end-to-end deep learning framework incorporating a spectral-spatial cascaded 3D convolutional neural network (CNN) with a convolutional long short-term memory (CLSTM) network, called SSCC, is proposed herein for HSI classification. The SSCC framework employs cascaded 3D CNN to learn the spectral-spatial features of HSIs and uses the CLSTM network to extract sequence features. Residual connections are used in SSCC to accelerate model convergence, with the outputs of previous convolutional layers concatenated as inputs for subsequent layers. Moreover, the data augmentation, parametric rectified linear unit, dynamic learning rate, batch normalization, and regularization (including dropout and L2) methods are used to increase classification accuracy and prevent overfitting. These attributes allow the SSCC framework to achieve good performance for HSI classification within 20 epochs. Three well-known datasets including Indiana Pines, University of Pavia, and Pavia Center were employed to evaluate the classification performance of the proposed algorithm. The GF-5 dataset of Anxin County, obtained from China’s recently launched spaceborne Advanced Hyperspectral Imager, was also used for classification experiments. The experimental results demonstrate that the proposed SSCC framework achieves state-of-the-art performance with better training efficiency than other deep learning methods.


2021 ◽  
Vol 11 (15) ◽  
pp. 7149
Author(s):  
Ji-Yeoun Lee

This work is focused on deep learning methods, such as feedforward neural network (FNN) and convolutional neural network (CNN), for pathological voice detection using mel-frequency cepstral coefficients (MFCCs), linear prediction cepstrum coefficients (LPCCs), and higher-order statistics (HOSs) parameters. In total, 518 voice data samples were obtained from the publicly available Saarbruecken voice database (SVD), comprising recordings of 259 healthy and 259 pathological women and men, respectively, and using /a/, /i/, and /u/ vowels at normal pitch. Significant differences were observed between the normal and the pathological voice signals for normalized skewness (p = 0.000) and kurtosis (p = 0.000), except for normalized kurtosis (p = 0.051) that was estimated in the /u/ samples in women. These parameters are useful and meaningful for classifying pathological voice signals. The highest accuracy, 82.69%, was achieved by the CNN classifier with the LPCCs parameter in the /u/ vowel in men. The second-best performance, 80.77%, was obtained with a combination of the FNN classifier, MFCCs, and HOSs for the /i/ vowel samples in women. There was merit in combining the acoustic measures with HOS parameters for better characterization in terms of accuracy. The combination of various parameters and deep learning methods was also useful for distinguishing normal from pathological voices.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.


2021 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Zexin Hu ◽  
Yiqi Zhao ◽  
Matloob Khushi

Predictions of stock and foreign exchange (Forex) have always been a hot and profitable area of study. Deep learning applications have been proven to yield better accuracy and return in the field of financial prediction and forecasting. In this survey, we selected papers from the Digital Bibliography & Library Project (DBLP) database for comparison and analysis. We classified papers according to different deep learning methods, which included Convolutional neural network (CNN); Long Short-Term Memory (LSTM); Deep neural network (DNN); Recurrent Neural Network (RNN); Reinforcement Learning; and other deep learning methods such as Hybrid Attention Networks (HAN), self-paced learning mechanism (NLP), and Wavenet. Furthermore, this paper reviews the dataset, variable, model, and results of each article. The survey used presents the results through the most used performance metrics: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE), accuracy, Sharpe ratio, and return rate. We identified that recent models combining LSTM with other methods, for example, DNN, are widely researched. Reinforcement learning and other deep learning methods yielded great returns and performances. We conclude that, in recent years, the trend of using deep-learning-based methods for financial modeling is rising exponentially.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012012
Author(s):  
Jiaqi Zhou

Abstract Time series anomaly detection has always been an important research direction. The early time series anomaly detection methods are mainly statistical methods and machine learning methods. With the powerful functions of deep neural network being continuously mined by researchers, the effect of deep neural network in anomaly detection task has been significantly better than the traditional methods. In view of the continuous development and application of deep neural networks such as transformer and graph neural network (GNN) in time series anomaly detection in recent years, the body of research lacks a comparative evaluation of deep learning methods in recent years. This paper studies various deep neural networks suitable for time series, which are divided into three categories according to anomaly detection methods. The evaluation is conducted on public datasets. By analyzing the evaluation criteria, this paper discusses the performance of each model, as well as the problems and development direction in the field of time series anomaly detection in the future. This study found that in the time series anomaly detection task, transformer is suitable for dealing with long-time series prediction, and studying the graph structure of time series may be the best way to deal with time series anomaly detection in the future


2020 ◽  
Vol 12 (6) ◽  
pp. 2475 ◽  
Author(s):  
Jae-joon Chung ◽  
Hyun-Jung Kim

This paper elucidates the development of a deep learning–based driver assistant that can prevent driving accidents arising from drowsiness. As a precursor to this assistant, the relationship between the sensation of sleep depravity among drivers during long journeys and CO2 concentrations in vehicles is established. Multimodal signals are collected by the assistant using five sensors that measure the levels of CO, CO2, and particulate matter (PM), as well as the temperature and humidity. These signals are then transmitted to a server via the Internet of Things, and a deep neural network utilizes this information to analyze the air quality in the vehicle. The deep network employs long short-term memory (LSTM), skip-generative adversarial network (GAN), and variational auto-encoder (VAE) models to build an air quality anomaly detection model. The deep learning models gather data via LSTM, while the semi-supervised deep learning models collect data via GANs and VAEs. The purpose of this assistant is to provide vehicle air quality information, such as PM alerts and sleep-deprived driving alerts, to drivers in real time and thereby prevent accidents.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document