scholarly journals Resting-State Networks Associated with Behavioral and Self-Reported Measures of Persecutory Ideation in Psychosis

2021 ◽  
Vol 11 (11) ◽  
pp. 1490
Author(s):  
Lingyan Yu ◽  
Rebecca Kazinka ◽  
Danielle Pratt ◽  
Anita Kwashie ◽  
Angus W. MacDonald

Persecutory ideations are self-referential delusions of being the target of malevolence despite a lack of evidence. Wisner et al. (2021) found that reduced connectivity between the left frontoparietal (lFP) network and parts of the orbitofrontal cortex (OFC) correlated with increased persecutory behaviors among psychotic patients performing in an economic social decision-making task that can measure the anticipation of a partner’s spiteful behavior. If this pattern could be observed in the resting state, it would suggest a functional-structural prior predisposing individuals to persecutory ideation. Forty-four patients in the early course of a psychotic disorder provided data for resting-state functional connectivity magnetic resonance imaging across nine brain networks that included the FP network and a similar OFC region. As predicted, we found a significant and negative correlation between the lFP–OFC at rest and the level of suspicious mistrust on the decision-making task using a within-group correlational design. Additionally, self-reported persecutory ideation correlated significantly with the connectivity between the right frontoparietal (rFP) network and the OFC. We extended the previous finding of reduced connectivity between the lFP network and the OFC in psychosis patients to the resting state, and observed a possible hemispheric difference, such that greater rFP–OFC connectivity predicted elevated self-reported persecutory ideation, suggesting potential differences between the lFP and rFP roles in persecutory social interactions.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuting Li ◽  
Xiuhang Ruan ◽  
E. Li ◽  
Guoqin Zhang ◽  
Yanjun Liu ◽  
...  

Background. Freezing of gait (FOG) is a disabling gait disorder influencing patients with Parkinson’s disease (PD). Accumulating evidence suggests that FOG is related to the functional alterations within brain networks. We investigated the changes in brain resting-state functional connectivity (FC) in patients with PD with FOG (FOG+) and without FOG (FOG-). Methods. Resting-state functional magnetic resonance imaging (RS-fMRI) data were collected from 55 PD patients (25 FOG+ and 30 FOG-) and 26 matched healthy controls (HC). Differences in intranetwork connectivity between FOG+, FOG-, and HC individuals were explored using independent component analysis (ICA). Results. Seven resting-state networks (RSNs) with abnormalities, including motor, executive, and cognitive-related networks, were found in PD patients compared to HC. Compared to FOG- patients, FOG+ patients had increased FC in advanced cognitive and attention-related networks. In addition, the FC values of the auditory network and default mode network were positively correlated with the Gait and Falls Questionnaire (GFQ) and Freezing of Gait Questionnaire (FOGQ) scores in FOG+ patients. Conclusions. Our findings suggest that the neural basis of PD is associated with impairments of multiple functional networks. Notably, alterations of advanced cognitive and attention-related networks rather than motor networks may be related to the mechanism of FOG.


2020 ◽  
Vol 93 (1108) ◽  
pp. 20190887 ◽  
Author(s):  
Xuan Niu ◽  
Hui Xu ◽  
Chenguang Guo ◽  
Tong Yang ◽  
Dustin Kress ◽  
...  

Objective: In spite of the well-known importance of thalamus in hemifacial spasm (HFS), the thalamic resting-state networks in HFS is still rarely mentioned. This study aimed to investigate resting-state functional connectivity (FC) of the thalamus in HFS patients and examine its association with clinical measures. Methods: 25 HFS patients and 28 matched healthy controls underwent functional MRI at rest. Using the left and right thalamus as seed regions respectively, we compared the thalamic resting-state networks between patient and control groups using two independent sample t-test. Results: Compared with controls, HFS patients exhibited strengthened bilateral thalamus-seeded FC with the parietal cortex. Enhanced FC between right thalamus and left somatosensory association cortex was linked to worse motor disturbance, and the increased right thalamus-right supramarginal gyrus connection were correlated with improvement of affective symptoms. Conclusion: Our findings indicate that the right thalamus–left somatosensory association cortex hyperconnectivity may represent the underlying neuroplasticity related to sensorimotor dysfunction. In addition, the upregulated FC between the right thalamus and right supramarginal gyrus in HFS, is part of the thalamo-default mode network pathway involved in emotional adaptation. Advances in knowledge: This study provides new insights on the integrative role of thalamo-parietal connectivity, which participates in differential neural circuitry as a mechanism underlying motor and emotional functions in HFS patients.


2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Nigul Ilves ◽  
Pilvi Ilves ◽  
Rael Laugesaar ◽  
Julius Juurmaa ◽  
Mairi Männamaa ◽  
...  

Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years): 10 with periventricular venous infarction (PVI), 7 with arterial ischemic stroke (AIS), and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1) and lower cognitive functions (p<0.05) were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.


2018 ◽  
Vol 39 (7) ◽  
pp. 3072-3085 ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Arne Nagels ◽  
Irina Falkenberg ◽  
Benjamin Straube

2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


2020 ◽  
Vol 10 (9) ◽  
pp. 647
Author(s):  
Maria Elide Vanutelli ◽  
Francesca Meroni ◽  
Giulia Fronda ◽  
Michela Balconi ◽  
Claudio Lucchiari

Decisional conflicts have been investigated with social decision-making tasks, which represent good models to elicit social and emotional dynamics, including fairness perception. To explore these issues, we created two modified versions of the UG framed within an economic vs. a moral context that included two kinds of unfair offers: advantageous (upside, U) or disadvantageous (downside, D) from the responder’s perspective, and vice-versa for the proponent. The hemodynamic activity of 36 participants, 20 females and 16 males, was continuously recorded with fNIRS to investigate the presence of general or specific circuits between the different experimental conditions. Results showed that disadvantageous offers (D) are associated with an increased widespread cortical activation. Furthermore, we found that advantageous moral choices at the expense of others (U) were related to the activation of the right prefrontal cortex. Finally, we found gender-related differences in brain activations in the different frameworks. In particular, the DLPFC was recruited by females during the economic task, and by males during the moral frame. In conclusion, the present study confirmed and expanded previous data about the role of the prefrontal cortices in decision-making, suggesting the need for further studies to understand better the different prefrontal networks serving moral and economic decisions also considering gender-related differences.


Sign in / Sign up

Export Citation Format

Share Document