scholarly journals ALDREN: A Methodological Framework to Support Decision-Making and Investments in Deep Energy Renovation of Non-Residential Buildings

Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Marta Maria Sesana ◽  
Graziano Salvalai ◽  
Diletta Brutti ◽  
Corinne Mandin ◽  
Wenjuan Wei

Since 2002, the Energy Performance of Buildings Directive (EPBD) has set up the path to improve the efficiency gains in the EU building sector, including measures that should accelerate the rate of building renovation towards more energy efficient systems. Under the 2010 EPBD, all EU countries have established independent energy performance certification systems supported by independent mechanisms of control and verification. The EU directive 2018/844 has introduced different novelties and one of these regards the possibility for the Member States, together with the Long-Term Renovation Strategies (LTRS), to introduce an optional Building Renovation Passport Article 2a.1(c), considered as an empowering document that gives more reliable and independent information on the potential for energy savings that is tied up in their buildings. On 14 October 2020, the European Commission launched its Communication and Strategy on the Renovation Wave initiative, intending to double the current Europe’s renovation rate to make the continent carbon neutral by 2050. However, current practices and tools of energy performance assessment and certification applied across Europe face several challenges. In this context, the ALDREN project is a methodological framework that aims to support decision-making and investment in deep energy renovation of nonresidential buildings, based on a set of procedures (modules) that consist in the step-by-step implementation of protocols to assess the energy performance, indoor environmental quality, and financial value of buildings, before and after the energy renovation. The paper presents the ALDREN overall procedure with a focus on the development of the Building Renovation Passport and its application to an Italian office building.

2021 ◽  
Vol 2069 (1) ◽  
pp. 012151
Author(s):  
Georgios Chantzis ◽  
Panagiota Antoniadou ◽  
Maria Symeonidou ◽  
Effrosyni Giama ◽  
Simeon Oxizidis ◽  
...  

Abstract The need to create and maintain a sustainable indoor environment is now more than ever compelling. Both the legislation framework concerning the energy performance of buildings, as determined in its evolution through the EU Directives 2010/31/EU, 2012/27/EU and 2018/844/EU, and the European strategic plans towards green buildings, denote the need of sustainability and comfort of indoor environment for the occupant. Moreover, the EU Directive 2018/2001 sets the renewable energy target of at least 32% for 2030, denoting that the high renewable energy sources penetration level leads to challenges in the design and control of power generation, transmission and distribution. Demand side management may be able to provide buildings with the energy flexibility needed, in order to utilize the intermittent production of Renewable Energy Sources in a much more efficient and cost-effective way. The flexibility potential of installed building systems is investigated, while considering the effects on the indoor environment conditions and the perceived comfort. The implemented Demand Response (DR) control strategy shifts loads by changing heating system set point temperatures, based on market clearing prices of the day ahead market. The results indicated a reduction in energy consumption and energy costs, while maintaining indoor environment quality at satisfactory levels.


2014 ◽  
Vol 899 ◽  
pp. 24-29 ◽  
Author(s):  
Emanuel Megyesi ◽  
Mariana Brumaru

Modular blocks of flats built with large prefabricated panels have become widespread in most of central and East-European countries particularly in the 80es, populating large-scale neighbourhoods. In Romania are representing about 37% of the total fund of apartment blocks, being present in most of the cities. The high percentage of thermal bridges and reduced design thermal resistance of the envelope make these buildings a priority in thermal retrofitting. Using up-to-date calculation methods, the paper presents a thorough analysis of the energy performance of large-panel residential buildings (apartment blocks) before and after renovation. The conclusions are focused on the practical measures to be undertaken for bringing the energy efficiency after retrofitting at the highest possible degree, thus meeting the requirements of the EU legislation and the targets set in the field of energy performance and reduction of CO2 emissions.


2021 ◽  
Vol 13 (5) ◽  
pp. 2820
Author(s):  
Eglė Klumbytė ◽  
Raimondas Bliūdžius ◽  
Milena Medineckienė ◽  
Paris A. Fokaides

Measuring and monitoring sustainability plays an essential role in impact assessment of global changes and development. Multi-criteria decision-making (MCDM) represents a reliable and adequate technique for assessing sustainability, especially in the field of municipal buildings management, where numerous parameters and criteria are involved. This study presents an MCDM model for the sustainable decision-making, tailored to municipal residential buildings facilities management. The main outcome of this research concerned normalized and weighted decision-making matrixes, based on the complex proportion assessment (COPRAS) and weighted aggregated sum product assessment (WASPAS) methods, applied for ranking investment alternatives related to the management of the buildings. The delivered model was applied to 20 municipal buildings of Kaunas city municipality, located in Lithuania, which an EU member state employing practices and regulations in accordance with the EU acquis, as well as a former Soviet Republic. The proposed model aspires to enhance sustainability practices in the management of municipal buildings and to demonstrate a solid tool that will allow informed decision-making in the building management sector.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2245 ◽  
Author(s):  
Annika K. Jägerbrand

The aim of this review was to map synergies and trade-offs between sustainable development and energy efficiency and savings regarding exterior lighting. Exterior lighting, such as public road and street lighting, requires significant amounts of energy and hinders sustainable development through its increasing of light pollution, ecological impact, and global climate change. Interlinkages between indicators in sustainability and energy that have positive interactions will lead to a mutual reinforcement in the decision-making process, and vice versa, interlinkages between trade-offs may lead to unwanted and conflicting effects. Very few studies have presented a clear vision of how exterior lighting should be contributing to, and not counteracting, the sustainable development of our planet. This study was conducted through a theoretical and systematic analysis that examined the interactions between sustainable development and energy performance based on a framework using indicators and variables, and by reviewing the current literature. Additionally, 17 indicators of energy efficiency and energy savings were identified and used in the analysis. Most interactions between variables for sustainable development and energy performance (52%) were found to be synergistic. The synergistic interactions were mostly found (71%) in the ecological and environmental dimension showing that environmental and ecological sustainability goes hand in hand with energy efficiency and savings. Trade-offs were found only in the economic and social dimensions accounting for 18% of the interactions identified. This review shows that the interactions between sustainable development and energy performance can be used to establish more efficient policies for decision-making processes regarding exterior lighting.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6068
Author(s):  
Remy Carlier ◽  
Mohammad Dabbagh ◽  
Moncef Krarti

This paper evaluates the potential energy savings when switchable insulation systems (SIS) are applied to walls of residential buildings located in Belgium and other locations in Europe. The study considers two low-energy prototypical dwellings (an apartment and a detached house) that are representative of post-2010 constructions and renovations in Belgium. Using an 3R2C-based analysis tool, the performance of both dwellings is evaluated with static and dynamic wall insulation systems. First, the switchable insulating system is described along with its associated simple 2-step rule-based control strategy. Then the modeling strategy and simulation analysis tools are presented. In Belgium, it was found that SIS-integrated walls allow energy savings up to 3.7% for space heating and up to 98% for cooling. Moreover, it was found that to further reduce the energy consumption of SIS-integrated buildings in various European climates, thermal mass placement needs to be considered. By optimizing the placement and the parameters of the various wall layers, it is possible to increase the space heating savings by up to a factor of 4 and those of cooling by up to a factor of 2.5.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2516 ◽  
Author(s):  
Alex Gonzalez Caceres

Dwellings built between 1945 and 1980 have the largest energy demand in the EU, which by 2009 represented 70% of the final energy use in buildings. A great portion of these dwellings have not been retrofitted and most of them were not built with any energy efficiency measures, since most of the energy regulations were implemented after the oil crisis in the 70s. To face this issue several actions were taken in the EU, among these, the implementation of Energy Performance Certification, which includes a Recommendation List of Measures (RLMs) to retrofit the property. The main objective of this study is to identify the weaknesses of the RLMs and to suggest changes to improve the quality and impact of this feature. The results indicate that to retrofit an existing building, the RLMs lack information for decision-making. The study suggests important barriers to overcome for achieving potential energy reductions in existing residential buildings, highlighting improvements to the recommendation content and its implementation.


2014 ◽  
Vol 14 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Janis Kazjonovs ◽  
Andrejs Sipkevics ◽  
Andris Jakovics ◽  
Andris Dancigs ◽  
Diana Bajare ◽  
...  

Abstract Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being −20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the experimental stand is equipped with sensors which provide measurements for electricity consumption and gained heat energy.


Sign in / Sign up

Export Citation Format

Share Document