scholarly journals Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

2014 ◽  
Vol 14 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Janis Kazjonovs ◽  
Andrejs Sipkevics ◽  
Andris Jakovics ◽  
Andris Dancigs ◽  
Diana Bajare ◽  
...  

Abstract Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being −20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the experimental stand is equipped with sensors which provide measurements for electricity consumption and gained heat energy.

2020 ◽  
Vol 207 ◽  
pp. 01014
Author(s):  
Nadezhda Doseva ◽  
Daniela Chakyrova

Nowadays, the application of air-source heat pumps for heating and cooling in residential buildings has been increased significantly. The main occasion for this is the accessibility of a heat source for these devices - the external air. Nevertheless, the increase of the energy efficiency of the air source heat pump systems is a difficult design problem because their capacity and performance are a function of the dynamically changing parameters of the outdoor air. Because of that, the main aim of this study is to develop an approach for choosing a structural scheme of an air-to-water heat pump system under specific climatic conditions. The considered systems are monovalent, bivalent-parallel and bivalent-alternative heat pump systems. In the current paper is conducted a dynamic energy modeling of heating and cooling demand of a typical residential building situated in Varna, Bulgaria and applying the bin temperature data. It is assessed the effect of the heat pump capacity over the annual and seasonal energy performance of the heat pump systems. It is established the effect of the bivalent temperature, cut-off temperature and on-off cycles duration on rates of the criteria for techno-economic assessment. The seasonal coefficient of performance (SCOP), seasonal energy efficiency rate (SEER) and life cycle costs (LCC) of the analyzed heat pump systems are adopted as assessment parameters.


2019 ◽  
Vol 116 ◽  
pp. 00039 ◽  
Author(s):  
Piotr Kowalski ◽  
Paweł Szałański

The article discusses the problem of determining for air heat pumps the seasonal efficiency of energy production necessary to determine the energy performance of a building. On the example of selected Polish cities (Suwalki, Bialystok, Warsaw, Wroclaw, Zielona Gora, Resko, Szczecinek, Koszalin) the influence of climatic conditions on the SCOP of an exemplary air-to-air heat pump and on the result of building energy performance calculations was analysed. SCOPs for each location were determined according to the method of EN 14825. The difference between SCOP for average (A) and colder (C) climates according to EN 14825 was 35.6%. It has been shown that the climate of Polish cities may be similar to both the average climate (A) and the colder climate (C), or they significantly differ from both climates. The most significant difference in SCOP between the analysed cities was obtained for Suwalki and Szczecinek. It was 31.9% and 31.4% for the assumed heating season length as for climate (A) and (C) respectively. For the exemplary building in Suwalki, taking SCOP for the average climate (A) and not based on climatic data of Suwalki gives an error of 39.3% in the calculation of primary energy for heating. For the same locations, the differences in SCOP and EP resulting from the assumption of the heating season length as for the average climate (A) or as for the colder climate (C) were respectively from 2.4% to 3.3% and from -3.4% to -2.2%. In diversified Polish climate, assuming the same SCOP values of air heat pumps regardless of location does not allow for their full comparison with devices whose efficiency does not depend on climatic conditions. The authors suggest that when calculating the energy performance of the building, the SCOP should be always determined on the basis of the local climate and the length of the heating season.


2019 ◽  
Vol 111 ◽  
pp. 01068
Author(s):  
Elena Fuentes ◽  
Jaume Salom

The use of simple mathematical models for describing the behaviour of heat pumps is important for assessing the energy performance of this equipment when installed in buildings. However, because of their simplicity, commonly used simple models, may not be able to fully account for the dynamic performance of heat pumps during transient phases. In this study, different performance black box models for an on-off water-to-water heat pump are validated by comparison with laboratory experimental results at steady state and dynamic cycling conditions. The models range from the solution based on the interpolation on the heat pump performance map to the detailed dynamic solution that combines correlations for the quasi-steady state operation and activation functions to model the transient phases. The output temperatures, electrical and thermal power and coefficient of performance from simulations were compared with experimental data from a water-to-water heat pump of 40.5 kW nominal heating capacity operating under cycling conditions. After validation with experiments, annual energy performance simulations of a tertiary building provided with a heat pump were conducted. These simulations quantifying the uncertainty expected when using heat pump performance models in simulation environments for estimating their annual energy performance.


2018 ◽  
Vol 3 (2) ◽  
pp. 58-61
Author(s):  
Agnieszka Lisowska-Lis ◽  
Robert Leszczyński

The subject of the research was an air-water heat pump, model PCUW 2.5kW from HEWALEX, installed in a single-family house. The pump is only used for heating water. The research was carried out from 25-08-2017 to 18-09-2017 in the village of Zborowice, in Malopolska region, Poland. The data were recorded from the heat pump system: temperature of the lower heat source (external air), temperature of the upper heat source (water temperature in the tank), time of heat pump was calculated during the analysed cycle of work and electrical energy consumption. The Coefficient Of Performance (COP) of the analysed air-water heat pump was determined. The analysis of the results was carried out using the MATLAB and EXCEL statistical tools. The correlation between COP coefficient and external air temperature is strong: 0.67.


2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012151
Author(s):  
Georgios Chantzis ◽  
Panagiota Antoniadou ◽  
Maria Symeonidou ◽  
Effrosyni Giama ◽  
Simeon Oxizidis ◽  
...  

Abstract The need to create and maintain a sustainable indoor environment is now more than ever compelling. Both the legislation framework concerning the energy performance of buildings, as determined in its evolution through the EU Directives 2010/31/EU, 2012/27/EU and 2018/844/EU, and the European strategic plans towards green buildings, denote the need of sustainability and comfort of indoor environment for the occupant. Moreover, the EU Directive 2018/2001 sets the renewable energy target of at least 32% for 2030, denoting that the high renewable energy sources penetration level leads to challenges in the design and control of power generation, transmission and distribution. Demand side management may be able to provide buildings with the energy flexibility needed, in order to utilize the intermittent production of Renewable Energy Sources in a much more efficient and cost-effective way. The flexibility potential of installed building systems is investigated, while considering the effects on the indoor environment conditions and the perceived comfort. The implemented Demand Response (DR) control strategy shifts loads by changing heating system set point temperatures, based on market clearing prices of the day ahead market. The results indicated a reduction in energy consumption and energy costs, while maintaining indoor environment quality at satisfactory levels.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1571
Author(s):  
Cristian Sánchez ◽  
Lionel Bloch ◽  
Jordan Holweger ◽  
Christophe Ballif ◽  
Nicolas Wyrsch

Advanced control of heat pumps with thermal storage and photovoltaics has recently been promoted as a promising solution to help decarbonise the residential sector. Heat pumps and thermal storage offer a valuable flexibilisation mean to integrate stochastic renewable energy sources into the electricity grid. Heat pump energy conversion is nonlinear, leading to a challenging nonlinear optimisation problem. However, issues like global optimum uncertainty and the time-consuming methods of current nonlinear programming solvers draw researchers to linearise heat pump models that are then implemented in faster and globally convergent linear programming solvers. Nevertheless, these linearisations generate some inaccuracies, especially in the calculation of the heat pump’s coefficient of performance ( C O P ). In order to solve all of these issues, this paper presents a heuristic control algorithm (HCA) to provide a fast, accurate and near-optimal solution to the original nonlinear optimisation problem for a single-family house with a photovoltaic system, using real consumption data from a typical Swiss house. Results highlight that the HCA solves this optimisation problem up to 1000 times faster, yielding an operation that is up to 49% cheaper and self-consumption rates that are 5% greater than other nonlinear solvers. Comparing the performance of the HCA and the linear solver intlinprog, it is shown that the HCA provides more accurate heat pump control with an increase of up to 9% in system Operating Expense OPEX and a decrease of 8% in self-consumption values.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6016
Author(s):  
Sebastian Kuboth ◽  
Theresa Weith ◽  
Florian Heberle ◽  
Matthias Welzl ◽  
Dieter Brüggemann

This article presents a 125-day experiment to investigate model predictive heat pump control. The experiment was performed in two parallel operated systems with identical components during the heating season. One of the systems was operated by a standard controller and thus represented a reference to evaluate the model predictive control. Both test rigs were heated by an air-source heat pump which is influenced by real weather conditions. A single-family house model depending on weather measurement data ensured a realistic heat consumption in the test rigs. The adapted model predictive control algorithm aimed to minimize the operational costs of the heat pump. The evaluation of the measurement results showed that the electrical energy demand of the heat pump can be reduced and the coefficient of performance can be increased by applying the model predictive controller. Furthermore, the self-consumption of photovoltaic electricity, which is calculated by means of a photovoltaic model and global radiation measurement data, was more than doubled. Consequently, the energy costs of heat pump operation were reduced by 9.0% in comparison to the reference and assuming German energy prices. The results were further compared to the scientific literature and short-term measurements were performed with the same experimental setup. The dependence of the measurement results on the weather conditions and the weather forecasting quality are shown. It was found that the duration of experiments should be as long as possible for a comprehensive evaluation of the model predictive control potential.


2019 ◽  
Vol 1 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Konstantinos Ninikas ◽  
Nicholas Hytiris ◽  
Rohinton Emmanuel ◽  
Bjorn Aaen

In this short communication, we demonstrate that the performance of a typical air source heat pump (ASHP), exploiting a relatively stable air temperature within a subway environment, is high, even during the peak heating months. After a nine-month operational run, the coefficient of performance is demonstrated to be 3.5. The design and installation difficulties are stated together with the lessons learnt following this trial. The actual energy and carbon savings are discussed.


Sign in / Sign up

Export Citation Format

Share Document