scholarly journals Improving Comfort and Health: Green Retrofit Designs for Sunken Courtyards during the Summer Period in a Subtropical Climate

Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 413
Author(s):  
Gang Han ◽  
Yueming Wen ◽  
Jiawei Leng ◽  
Lijun Sun

The sunken courtyard has long been used in underground spaces and provides an important outdoor environment. It introduces natural elements to create a pleasant space for human activities. However, this study measured a typical sunken courtyard and found potential problems of excessive solar radiation and accumulated air pollutants in summer when at an acceptable outdoor temperature for human activities. To improve the comfort and health of a sunken courtyard, this research proposes some green retrofit designs. Firstly, compared with green wall, water and a tree, sunshade is a primary measure to improve thermal comfort. Combining sunshade, a green wall and water reduces the temperature by up to 5.6 °C in the activity zone during the hottest hour. Secondly, blocking/guiding wind walls can effectively improve the wind environment in a sunken courtyard, but only when the wind direction is close to the prevailing wind. A blocking wind wall was better at affecting velocity and uniformity, while the guiding wind wall was more efficient at discharging air pollutants. This study initially discusses the climate-adaptive design of underground spaces in terms of green, thermal comfort and natural ventilation. Designers should generally integrate above/underground and indoor/outdoor spaces using natural and artificial resources to improve comfort and health in underground spaces.

2012 ◽  
Vol 610-613 ◽  
pp. 1083-1086 ◽  
Author(s):  
Rabiatul Adawiyah Nasir ◽  
Sabarinah Sh Ahmad ◽  
Azni Zain Ahmed

Psychological adaptation towards environmental ergonomic is important to encourage better usage of outdoor space. Green space is a significant aspect as it is beneficial for the community. Outdoor spaces are supposedly an essential component of urban recreation space that provides opportunities for recreational activities. Human responses to the outdoor environment and actual thermal sensation experienced by individuals are important to determine the people’s level of understanding of the condition. This paper explores people’s perception about the microclimate condition in hot and humid climate. The responses of the respondents are correlated with the measurement of the microclimate condition. The microclimate conditions of the urban recreational area are measured to get the actual sensation of thermal experience of the people. The results confirmed the existence of adaptive thermal comfort amongst the respondents where they perceived better microclimatic conditions compared to what were measured.


Author(s):  
Chalermwat Tantasavasdi ◽  
Natthaumporn Inprom

Abstract In recent times, retail buildings in tropical areas have started to evolve from fully enclosed air-conditioned designs towards designs featuring open-air naturally ventilated malls. This paper discusses influential factors that can be used to help achieve thermal comfort conditions in the semi-outdoor spaces of open-air malls within the Bangkok Metropolitan Area in Thailand. The researchers surveyed 23 buildings and categorised them into three groups according to their configurations. Six representative projects were selected and assessed using a computational fluid dynamics program. The results revealed that the percentages of thermal comfort hours varied from 34.7% to 80.8% of the annual occupation time and were highly dependent on the design decisions taken for individual projects. The study found that among five important design factors, which are position of openings in accordance to the prevailing wind, distribution of openings, window-to-wall ratio, building shape, and openings that encourage cross-ventilation, the first factor was the most influential. Buildings that have their position of openings in good accordance to the prevailing winds can achieve the number of hours 2.0 times greater than those that do not.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shuo Chen ◽  
Peng Cui ◽  
Hongyuan Mei

The microclimate affects the quality and efficiency of outdoor spaces of campuses, especially in the cold regions of China. In this paper, we propose a multiobjective optimization method to improve the thermal comfort of the outdoor environment of university campuses in severe cold regions. We used morphology data from 41 universities in the cold region of China to create a layout prototype of a campus cluster. Multiobjective optimization was used, and the effects of sunlight, solar radiation, and wind on the outdoor thermal comfort in winter were considered. A parameterized platform was established for the multiobjective optimization of the microclimate of the simplified model of the campus. A multiobjective optimization based on an evolutionary algorithm was used to obtain 108 groups of nondominated solutions. The optimum outdoor microclimate of the campus was obtained at a building density of 0.21–0.23, a plot ratio of 1.51–1.88, and a road width of 11–14 m. We recommend that buildings are designed based on the wind direction in winter and that the space between buildings is increased.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


2015 ◽  
Vol 650 ◽  
pp. 82-90 ◽  
Author(s):  
D. Kannamma ◽  
A. Meenatchi Sundaram

The climatic conditions in a man-made urban environment may differ appreciably from those in the surrounding natural or rural environs.... each urban man-made buildings, roads, parking area, factories......creates around and above it a modified climate with which it interacts [1].Outdoor thermal comfort has gained importance in thermal comfort studies especially in tropical countries. In country like India, culturally the activities are spread both indoors and outdoors. Therefore the need for ambient outdoor environment gains importance. As there are many factors that contribute to outdoor thermal comfort (climatic factors and physical factors), this study aims in analyzing the impact of building material contribution, in an institutional courtyard. In order to understand the thermal contribution of various building materials and to suggest material choice to designers, ENVIMET is used for simulation purpose. The outdoor thermal comfort index employed in this study is PET (Physiological Equivalent Temperature), calibrated using RAYMAN.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


Sign in / Sign up

Export Citation Format

Share Document