Implications of Building Material Choice on Outdoor Microclimate for Sustainable Built Environment

2015 ◽  
Vol 650 ◽  
pp. 82-90 ◽  
Author(s):  
D. Kannamma ◽  
A. Meenatchi Sundaram

The climatic conditions in a man-made urban environment may differ appreciably from those in the surrounding natural or rural environs.... each urban man-made buildings, roads, parking area, factories......creates around and above it a modified climate with which it interacts [1].Outdoor thermal comfort has gained importance in thermal comfort studies especially in tropical countries. In country like India, culturally the activities are spread both indoors and outdoors. Therefore the need for ambient outdoor environment gains importance. As there are many factors that contribute to outdoor thermal comfort (climatic factors and physical factors), this study aims in analyzing the impact of building material contribution, in an institutional courtyard. In order to understand the thermal contribution of various building materials and to suggest material choice to designers, ENVIMET is used for simulation purpose. The outdoor thermal comfort index employed in this study is PET (Physiological Equivalent Temperature), calibrated using RAYMAN.

2019 ◽  
Vol 11 (5) ◽  
pp. 1355 ◽  
Author(s):  
Shi Yin ◽  
Werner Lang ◽  
Yiqiang Xiao ◽  
Zhao Xu

Traditional shophouse neighbourhoods (TSNs) in southern China respond well to the local hot and humid climate through proper street configurations and the integration of different shading strategies. Investigating the impact of shading strategies and configurations in TSNs on outdoor thermal comfort is valuable for guiding current urban design. Three street canyons in a TSN of Guangzhou with different shading strategies were selected as basic cases for microclimatic measurement in the summer season, i.e., alleys, streets with arcade for pedestrians, and streets with high-density greenery. After validating their simulation models in ENVI-met, five groups of parametric simulations were generated by varying the canyon aspect ratio (CHW), the canyon axis orientation, arcade proportion (AHW), and the tree-covered area (TCA). Using the physiological equivalent temperature (PET) to assess the above results, the correlative impact of different variations on pedestrian’s thermal comfort and their corresponding favourable ranges are summarized. The findings suggest that: (a) only in alleys and arcade streets, the pedestrian-level thermal comfort was significantly influenced by canyon axis orientation. (b) The thermal stress for pedestrians increased dramatically when the CHW was lower than 1.5 in alleys and 0.78 in boulevards (in TCA = 89%), while the CHW higher than 1 indicated a remarkable reduction on the PET for pedestrians in arcades. (c) The pedestrians started losing the protection from shading strategy to thermal stress when the AHW was higher than 1.33 (in canyon with CHW = 1) or the TCA was lower than 33% (in canyon with CHW = 0.78).


2021 ◽  
Vol 13 (14) ◽  
pp. 7811
Author(s):  
Ka-Ming Wai ◽  
Lei Xiao ◽  
Tanya Zheng Tan

Adaptation to prepare for adverse climate change impacts in the context of urban heat islands and outdoor thermal comfort (OTC) is receiving growing concern. However, knowledge of quantitative microclimatic conditions within the urban boundary layer in the future is still lacking, such that the introduction of adequate adaptation measures to increase OTC is challenging. To investigate the cooling performance of a water spraying system in a sub-tropical compact and high-rise built environment in summer under the influence of future (2050) climatic conditions, results from two validated models (Weather Research and Forecast (WRF) and ENVI-met models) have been used and analyzed. Our results indicate that the spraying system provides cooling of 2–3 °C for ambient air temperature at the pedestrian-level of the urban canyons considered here, which benefits pedestrians. However, improvement of the OTC in terms of the physiological equivalent temperature (PET—a better indicator of human thermal sensation) was noticeable (e.g., <42 °C or from very hot to hot) when the urban canyon was orientated parallel to the prevailing wind direction only. This implies that in order to improve city resilience in terms of heat stress, more holistic adaptation measures in urban planning are needed. This includes the introduction of more breezeways and building disposition to facilitate the urban ventilation, as well as urban tree arrangement and sunshades to reduce direct solar radiation to plan for the impact of future climate change.


2021 ◽  
Vol 13 (2) ◽  
pp. 678
Author(s):  
Mehdi Makvandi ◽  
Xilin Zhou ◽  
Chuancheng Li ◽  
Qinli Deng

To date, studies of outdoor thermal comfort (OTC) have focused primarily on physical factors, tending to overlook the relevance of individual adaptation to microclimate parameters through psychological and physiological behaviors. These adaptations can significantly affect the use of urban and outdoor spaces. The study presented here investigated these issues, with a view to aiding sustainable urban development. Measurements of OTC were taken at a university campus and in urban spaces. Simultaneously, a large-scale survey of thermal adaptability was conducted. Two groups were selected for investigation in a cold-winter-and-hot-summer (CWHS) region; respondents came from humid subtropical (Cfa) and hot desert (BWh) climates, according to the Köppen Climate Classification (KCC). Results showed that: (1) neutral physiological equivalent temperature (NPET) and preferred PET for people from the Cfa (PCfa) and BWh (PBWh) groups could be obtained with KCC; (2) PCfa adaptability behaviors were, subjectively, more adjustable than PBWh; (3) Clothing affected neutral temperature (NT), where NT reduced by approximately 0.5 °C when clothing insulation rose 0.1 Clo; and (4) Gender barely affected thermal acceptance vote (TAV) or thermal comfort vote (TCV) and there was a substantial relationship between thermal sensation, NT, and PET. These findings suggest ‘feels like’ temperature and comfort may be adjusted via relationships between microclimate parameters.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 361-370
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi ◽  
Simone Beltramino

Extensive and intensive green roofs and vegetated walls should be used to improve the livability in cities, especially in densely built-up context, in order to optimize their contribution on energy savings and greenhouse gas emissions, improving thermal comfort conditions and ensuring a greater storm-water runoff. The aim of this study is to evaluate the effect of urban morphology and to quantify the impact of green surfaces and plants on outdoor thermal comfort conditions. The analysis was applied to six neighborhoods in the city of Turin, identified as typical districts with different building geometries, urban contexts and green presence. The outdoor thermal comfort conditions were assessed calculating a set of indicators, such as the predicted mean vote and the physiological equivalent temperature, with the support of ENVI-met tool. Retrofit scenarios were hypothesized, and outdoor thermal comfort conditions were investigated before and after the installation of green roofs and vegetated areas. The result allowed to understand how thermal comfort vary, considering the building geometry, urban morphology, and green areas in different zones of the city of Turin. By analyzing neighborhoods, it is possible to identify the optimal built environment that ensure better thermal comfort conditions. These models and tools could support urban planners in defining the best measures to improve the liveability and quality in the built environment considering local constraints and the real characteristics of the territory or in designing new neighborhoods.


2020 ◽  
Author(s):  
Farshid Aram ◽  
Ebrahim Solgi ◽  
Ester Higueras García ◽  
Amir Mosavi

Abstract Background: In densely populated urban centers, increased air temperature due to urban heat island (UHI) effect can undermine the thermal comfort and health of citizens. Research has shown that large urban parks can mitigate the effect of UHIs and improve thermal comfort, especially in the warmer months of the year when temperature changes are more noticeable. This study investigated the cooling effect intensity (CEI) of the Retiro Park in the center of Madrid at three different distances from its southern edge and the impact of this cooling effect on thermal comfort from physiological and psychological perspectives. This investigation was performed by measuring microclimate data and conducting a survey simultaneously during the summer days. Results: The results showed that the CEI of the park varies with distance from its edge. Because of this effect, air temperature within the 130m and 280m distance of the park was respectively 1.6°C and 0.9°C lower than the temperature at the 520m distance (the nearest heat island). After examining the effect of the park in terms of Physiological Equivalent Temperature (PET), it was found that the PET at the 130m and 280m distance of the park was 9.3% and 5.4% less than the PET in the heat island domain. More than 81% of the respondents (in all three areas) had a mental image of the park as the place where they would experience the highest level of outdoor thermal comfort, and this rate was higher in the areas closer to the park. The analysis of citizens’ responses about perceived thermal comfort (PTC) showed that citizens in areas with higher CEI had perceived a higher degree of thermal comfort from the psychological perspective.Conclusion: This study demonstrates the significant role of large urban parks located in the core of the populated cities in providing thermal comfort for citizens from both physiological and psychological perspectives. Additionally, the results of this study demonstrated that among the environmental (natural and artificial) factors around the park (topography, urban structure, etc.), the aspect ratio has the greatest impact on thermal comfort.


2020 ◽  
Vol 12 (23) ◽  
pp. 10000
Author(s):  
Nazanin Nasrollahi ◽  
Amir Ghosouri ◽  
Jamal Khodakarami ◽  
Mohammad Taleghani

Thermal comfort is one of the main factors affecting pedestrian health, and improving thermal comfort enhances walkability. In this paper, the impact of various strategies on thermal-comfort improvement for pedestrians is thoroughly evaluated and compared. Review studies cover both fieldwork and simulation results. These strategies consist of shading (trees, buildings), the orientation and geometry of urban forms, vegetation, solar-reflective materials, and water bodies, which were investigated as the most effective ways to improve outdoor thermal comfort. Results showed that the most important climatic factors affecting outdoor thermal comfort are mean radiant temperature, wind speed, and wind direction in a microclimate. The best heat-mitigation strategy for improving thermal comfort was found to be vegetation and specifically trees because of their shading effect. The effect of height-to-width (H/W) ratio in canyons is another important factor. By increasing H/W ratio, the thermal-comfort level also increases. Deploying highly reflective materials in urban canyons is not recommended, as several studies showed that they could reflect solar radiation onto pedestrians. Results also showed that, in order to achieve a satisfactory level of thermal comfort, physiological and psychological factors should be considered together.


2020 ◽  
Author(s):  
Farshid Aram ◽  
Ebrahim Solgi ◽  
Ester Higueras García ◽  
Amir Mosavi

Abstract Background: In densely populated urban centers, increased air temperature due to urban heat island (UHI) effect can undermine the thermal comfort and health of citizens. Research has shown that large urban parks can mitigate the effect of UHIs and improve thermal comfort, especially in the warmer months of the year when temperature changes are more noticeable. This study investigated the cooling effect intensity (CEI) of the Retiro Park in the center of Madrid at three different distances from its southern edge and the impact of this cooling effect on thermal comfort from physiological and psychological perspectives. This investigation was performed by measuring microclimate data and conducting a survey simultaneously during the summer days. Results: The results showed that the CEI of the park varies with distance from its edge. Because of this effect, air temperature within the 130m and 280m distance of the park was respectively 1.6°C and 0.9°C lower than the temperature at the 520m distance (the nearest heat island). After examining the effect of the park in terms of Physiological Equivalent Temperature (PET), it was found that the PET at the 130m and 280m distance of the park was 9.3% and 5.4% less than the PET in the heat island domain. More than 81% of the respondents (in all three areas) had a mental image of the park as the place where they would experience the highest level of outdoor thermal comfort, and this rate was higher in the areas closer to the park. The analysis of citizens’ responses about perceived thermal comfort (PTC) showed that citizens in areas with higher CEI had perceived a higher degree of thermal comfort from the psychological perspective. Conclusion: This study demonstrates the significant role of large urban parks located in the core of the populated cities in providing thermal comfort for citizens from both physiological and psychological perspectives.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Farshid Aram ◽  
Ebrahim Solgi ◽  
Ester Higueras Garcia ◽  
Amir Mosavi

Abstract Background In densely populated urban centers, increased air temperature due to urban heat island (UHI) effect can undermine the thermal comfort and health of citizens. Research has shown that large urban parks can mitigate the effect of UHIs and improve thermal comfort, especially in the warmer months of the year when temperature changes are more noticeable. This study investigated the cooling effect intensity (CEI) of the Retiro Park in the center of Madrid at three different distances from its southern edge and the impact of this cooling effect on thermal comfort from physiological and psychological perspectives. This investigation was performed by measuring microclimate data and conducting a survey simultaneously during the summer days. Results The results showed that the CEI of the park varies with distance from its edge. Because of this effect, air temperature within the 130 m and 280 m distance of the park was, respectively, 1.6 °C and 0.9 °C lower than the temperature at the 520 m distance (the nearest heat island). After examining the effect of the park in terms of physiological equivalent temperature (PET), it was found that the PET at the 130 m and 280 m distance of the park was 9.3% and 5.4% less than the PET in the heat island domain. More than 81% of the respondents (in all three areas) had a mental image of the park as the place where they would experience the highest level of outdoor thermal comfort, and this rate was higher in the areas closer to the park. The analysis of citizens’ responses about perceived thermal comfort (PTC) showed that citizens in areas with higher CEI had perceived a higher degree of thermal comfort from the psychological perspective. Conclusion This study demonstrates the significant role of large urban parks located in the core of the populated cities in providing thermal comfort for citizens from both physiological and psychological perspectives. Additionally, the results of this study demonstrated that among the environmental (natural and artificial) factors around the park (topography, urban structure, etc.), the aspect ratio has the greatest impact on thermal comfort.


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


Author(s):  
Pardeep Kumar ◽  
Amit Sharma

Outdoor thermal comfort (OTC) promotes the usage frequency of public places, recreational activities, and people's wellbeing. Despite the increased interest in OTC research in the past decade, less attention has been paid to OTC research in cold weather, especially in arid regions. The present study investigates the OTC conditions in open spaces at the campus area in the arid region. The study was conducted by using subjective surveys(questionnaire) and onsite monitoring (microclimate parameters). The study was conducted at the Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana-India campus during the cold season of 2019. The timings of surveys were between 9:00 and 17:00 hours. The authors processed the 185 valid questionnaire responses of the respondents to analyze OTC conditions. Only 8.6% of the respondents marked their perceived sensation "Neutral." Regression analysis was applied between respondents' thermal sensations and microclimate parameters to develop the empirical thermal sensation model. The air temperature was the most dominant parameter affecting the sensations of the respondents. The empirical model indicated that by increasing air temperature, relative humidity, and solar radiation, the thermal sensations also increased while wind speed had an opposite effect. Physiological equivalent temperature (PET) was applied for assessing the OTC conditions; the neutral PET range was found to be 18.42-25.37°C with a neutral temperature of 21.89°C. The preferred temperature was 21.99 °C by applying Probit analysis. The study's findings could provide valuable information in designing and planning outdoor spaces for educational institutions in India's arid regions


Sign in / Sign up

Export Citation Format

Share Document