scholarly journals FRP Pedestrian Bridges—Analysis of Different Infill Configurations

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 564
Author(s):  
Lucija Stepinac ◽  
Ana Skender ◽  
Domagoj Damjanović ◽  
Josip Galić

The main aim of this study is to analyze fiber-reinforced polymer (FRP) bridge decks according to their material, cross-section, and shape geometry. Infill cell configurations of the decks (rectangular, triangular, trapezoidal, and honeycomb) were tested based on the FRP cell units available in the market. A comparison was made for each cell configuration in flat and curved bridge shapes. Another comparison was made between the material properties. Each model was computed for a composite layup material and a quasi-isotropic material. The quasi-isotropic material represents chopped fibers within a matrix. FE (finite element) analysis was performed on a total of 24 models using Abaqus software. The results show that the bridge shape geometry and infill configuration play an important role in increasing the stiffness, more so than improving the material properties. The arch shape of the bridge deck with quasi-isotropic material and chopped fibers was compared to the cross-ply laminate material in a flat bridge deck. The results show that the arch shape of the bridge deck contributed to the overall stiffness by reducing the deformation by an average of 30–40%. The results of this preliminary study will provide a basis for future research into form finding and laboratory testing.

2018 ◽  
Vol 9 (2) ◽  
pp. 5 ◽  
Author(s):  
K. Ghaedi ◽  
Z. Ibrahim ◽  
A. Javanmardi ◽  
M. Jameel ◽  
U. Hanif ◽  
...  

Using appropriate material properties for analyzing different models in academic and commercially availablefinite element software is one of the main concerns for design engineers and researchers. This paper demonstrates theimportance of using appropriate material properties for the models to be considered by engineers during finite elementmodelling. Two reinforced concrete (RC) beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) strips areinvestigated, considering the CFRP elements as elastically isotropic and orthotropic materials. To show the significance ofthe selective material properties, all properties of the models are chosen to be exactly the same for the two beams except forthe CFRP strip. To validate the study, an RC beam is tested experimentally and the numerical results are compared to theexperimental test. The results show that CFRP with isotropic or orthotropic properties has no significant influence on beamresponses such as stresses, displacements and damage response under applied loadings.


2012 ◽  
Vol 166-169 ◽  
pp. 1517-1520
Author(s):  
Wen Sheng Li ◽  
Kai Wang

In order to study on the flexural performances of beams strengthened with external bonded carbon fiber reinforced polymer(CFRP)sheets, nonlinear analysis is carried out by using software ANSYS. The results show that a reasonable finite element model, using a reasonable solution strategy can be a good simulation of CFRP flexural performance of reinforced concrete beams, and finite element analysis results with the experimental results have good consistency .The beams reinforced by carbon fiber polymer,the capacity of flexural resistance increased with the numbers of carbon fiber paste sheets, reinforced components of flexural capacity significantly improved, but the extent of its increase is not proportional with the numbers of carbon fiber paste sheets.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1966 ◽  
Author(s):  
Waqas ◽  
Shi ◽  
Imran ◽  
Khan ◽  
Tong ◽  
...  

Radomes are usually constructed from sandwich structures made of materials which usually have a low dielectric constant so that they do not interfere with electromagnetic waves. Performance of the antenna is increased by the appropriate assortment of materials enabling it to survive under marine applications, and it depends on composite strength-to-weight ratio, stiffness, and resistance to corrosion. The design of a sandwich core submarine radome greatly depends on the material system, number of layers, orientation angles, and thickness of the core material. In this paper, a conceptual design study for a sandwich core submarine radome is carried out with the help of finite element analysis (FEA) using two unidirectional composite materials—glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP)—as a skin material and six different core materials. Conceptual designs are obtained based on constraints on the composite materials’ failure, buckling, and strength. The thickness of the core is reduced under constraints on material and buckling strength. Finite element analysis software ANSYS WORKBENCH is used to carry out all the simulations.


2019 ◽  
Vol 271 ◽  
pp. 01012
Author(s):  
Diogo Zignago ◽  
Michele Barbato

Confinement of reinforced concrete (RC) piers generally has a beneficial effect on both the compressive strength and the ductility of the confined member. Thus, externally-bonded fiber-reinforced polymer (FRP) wrapping is often used as a retrofit technique for bridge piers when additional compressive strength is needed. This study employs finite element analysis and a recently developed FRP-and-steel confined concrete model to investigate the influence of internal steel confinement on the response of circular RC columns confined with FRP and subject to concentric axial load. This new model leads to more accurate estimates of the response of these columns, what is particularly relevant for piers in short span bridges that are subjected mainly to vertical loads, for which it could lead to a more efficient and economical piers’ retrofit, as well as a more accurate and less conservative bridge rating. A parametric study is conducted to examine the importance of some key parameters in the design of such columns.


2020 ◽  
Vol 10 (7) ◽  
pp. 2489 ◽  
Author(s):  
Francesca Sciarretta

This paper presents a study on the potentiality of seismic retrofitting solutions with pultruded Fiber Reinforced Polymer (FRP) profiles. This material can be used in connected frames providing lightweight, corrosion-free and reversible retrofitting of masonry buildings with the moderate requirements of surface preservation. In a hypothetical case study, an experimental program was designed; monotonic shear tests on a half-size physical model of the sample wall were performed to assess the structural performance before and after retrofitting with a basic frame of pultruded Glass Fiber Reinforced Polymer (GFRP) C-shaped profiles, connected to the masonry by steel threaded bar connections. During the tests, the drift, the diagonal displacements in the masonry and the micro-strain in the profiles were measured. The retrofitted system has proven very effective in delaying crack appearance, increasing the maximum load (+85% to +93%) and ultimate displacement (up to +303%). The failure mode switches from rocking to a combination of diagonal cracking and bed joint sliding. The gauge recordings show a very limited mechanical exploitation of the GFRP material, despite the noticeable effectiveness of the retrofit. The application seems thus promising and worth a deeper research focus. Finally, a finite element modelling approach has been developed and validated, and it will be useful to envisage the effects of the proposed solution in future research.


Sign in / Sign up

Export Citation Format

Share Document